首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian metallothioneins ( \textM7\textIIMTs {\text{M}}_7^{\text{IIMTs}} ) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd3-thiolate cluster containing β-domain of mouse β-MT-1 and rat β-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen bonds in β-MT-2, features likely responsible for the increased stability of the Cd3-thiolate cluster and the enfolding protein domain. Alterations in the \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen-bonding network may provide a rationale for the differences in dynamic properties encountered in the β-domains of MT-1, -2, and -3 isoforms, believed to be essential for their different biological function.  相似文献   

2.
3.
The chlorophyll a-specific absorption coefficient ( a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) ) in a highly eutrophic lake can show characteristics distinct from that in the ocean due to the differences in the structure and composition of phytoplankton. In this study, investigated the variation of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in Lake Kasumigaura, a highly eutrophic lake in Japan, in association with the package effect and the effect of accessory pigments, and carried out the parameterization of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) . Although a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) did not vary spatially, it did show significant temporal variation, with a particularly high value after spring-bloom. This high a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in spring was attributed to a lower package effect and a higher proportion of carotenoid than the other samples. Although the value of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) was correlated with the concentration of chlorophyll-a (Chl-a), the correlation coefficient was lower than those reported in the ocean. Some lake-water samples showed variations of the package effect and the effect of accessory pigments that were independent of the concentration of Chl-a, and these independent variations resulted in the weak correlation between a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) and the concentration of Chl-a. Together, these results suggest that the factors controlling a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in highly eutrophic lakes are distinct from that in ocean samples.  相似文献   

4.
Although nitrate is a macronutrient and can serve as good nitrogen source for many species of phytoplankton, high nitrate concentrations do not benefit the growth of phytoplankton. We hypothesise that algae cultured under high nitrate concentrations can accumulate intracellular nitrite, which is produced by nitrate reductase (NR) and can inhibit the growth of algae. To assess the validity of this hypothesis, Microcystis aeruginosa was grown under different nitrate concentrations from 3.57 to 21.43 mM in low CO2 and high CO2 conditions for 15 days. We observed that, with increasing nitrate concentrations, the intracellular nitrite concentrations of the alga increased and the growth rates and photosynthesis declined. When grown under high CO2 conditions, M. aeruginosa showed lower intracellular nitrite concentrations and higher growth rates and \textP\textm\textchla {\text{P}}_{\text{m}}^{{\text{chl}}a} , \textR\textd\textchla {\text{R}}_{\text{d}}^{{\text{chl}}a} , αchla than under low CO2 conditions. These results suggest that the accumulation of intracellular nitrite could be the cause of inhibition of algal growth under high nitrate concentrations.  相似文献   

5.
The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: ${\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: \textlog10 \textEC50   ( m\textM ) = - 0.6428  \textlog  P + 5.76  ( \textR2 ? 0.88 ){\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}. This indicates that the photosynthetic activity of the microalga Pseudokirchneriella subcapitata is highly dependent on the hydrophobicity of these commonly used organic solvents.  相似文献   

6.
We report the synthesis and the biological evaluation of two new analogues of the potent dimeric opioid peptide biphalin. The performed modification is based on the replacement of two key structural elements of the native biphalin, namely: the hydrazine bridge which joins the two palindromic moieties and the phenylalanine residues at the 4,4′ positions of the backbone. The new analogues 9 and 10 contain 1,2-phenylenediamine and piperazine, respectively, in place of the hydrazidic linker and p-fluoro-l-phenylalanine residues at 4 and 4′ positions. Binding values are: K\textim = 0.51 \textnM K_{\text{i}}^{\mu } = 0.51\,{\text{nM}} and K\textid = 12.8 \textnM K_{\text{i}}^{\delta } = 12.8\,{\text{nM}} for compound 9, K\textim = 0.09 \textnM K_{\text{i}}^{\mu } = 0.09\,{\text{nM}} and K\textid = 0.11 \textnM K_{\text{i}}^{\delta } = 0.11\,{\text{nM}} for analogue 10.  相似文献   

7.
8.
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 1 3 \textCa ^{ 1 3} {\text{C}}^{\alpha } of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i1, i + 1 and i2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i2, i1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.  相似文献   

9.
The aim of this work was to develop a standard quantitative method to measure the acid tolerance of probiotic cells when exposed to a simulated gastric fluid. Three model strains of different cell concentrations were exposed to a standard simulated gastric fluid of fixed volume. The fluid pH ranged from pH 1.5 to 2.5. In general, the death kinetics followed an exponential trend. The overall death constant, k d, for all strains was found to be in a power relationship with the pH value and the initial cell concentration, and it can be expressed as
k\textd\text = k\textAII( \textp\textH - \text9.0N0 - 0.\text19 ) {k_{\text{d}}}{\text{ = }}{k_{\text{AII}}}\left( {{\text{p}}{{\text{H}}^{ - {\text{9}}.0}}{N_0}^{ - 0.{\text{19}}}} \right)  相似文献   

10.
Total height, diameter, index volume, stem straightness, apical dominance, and survival were assessed at 8 years from seed in an open-pollinated progeny test of 36 families of European chestnut (Castanea sativa Miller) established at two sites in the Atlantic area of Galicia, Spain. Iterative spatial analysis was applied to eliminate the effect of the spatial dependence in the original data and to estimate accurately genetic parameters for evaluating the potential for selection of the measured trees. Spatial analysis was very beneficial for growth traits and survival, but less so if at all for form traits. Estimated individual heritabilities ranged from moderate to high for growth traits ([^(h)]i2 = 0.29 - 0.42 \widehat{h}_i^2 = 0.29 - 0.42 ) and stem straightness ([^(h)]i2 = 0.24 - 0.42 \widehat{h}_i^2 = 0.{24} - 0.{42} ). High coefficients of additive genetic variance were obtained for volume ( [^(\textC)]\textV\textA = 36.5 - 41.5% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {36}.{5} - {41}.{5}\% ) and straightness ( [^(\textC)]\textV\textA = 44.26 - 53.84% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {44}.{26} - {53}.{84}\% ). Phenotypic and estimated genetic correlations between growth traits were very high, and correlations between sites indicated that there was no important family × site interaction. No adverse correlations between traits were evident. The results indicate the ample potential for selection in the current progeny trial, where responses to within-family and combined selection for growth traits may be high. Accordingly, three selection scenarios were addressed with the aim to initiate the selection of individuals for implementing the Forest Breeding Plan of Galicia for European chestnut.  相似文献   

11.
The ability to use heart rate (fh) to predict oxygen consumption rates ( [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} ) in Steller sea lions and other pinnipeds has been investigated in fasting animals. However, it is unknown whether established fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationships hold under more complex physiological situations, such as when animals are feeding or digesting. We assessed whether fh could accurately predict [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} in trained Steller sea lions while fasting and after being fed. Using linear mixed-effects models, we derived unique equations to describe the fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship for fasted sea lions resting on land and in water. Feeding did not significantly change the fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship on land. However, Steller sea lions in water displayed a different fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship after consuming a 4-kg meal compared with the fasting condition. Incorporating comparable published fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} data from Steller sea lions showed a distinct effect of feeding after a 6-kg meal. Ultimately, our study illustrated that both feeding and physical environment are statistically relevant when deriving [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} from telemetered fh, but that only environment affects the practical ability to predict metabolism from fh. Updating current bioenergetic models with data gathered using these predictive fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} equations will yield more accurate estimates of metabolic rates of free-ranging Steller sea lions under a variety of physiological, behavioral, and environmental states.  相似文献   

12.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

13.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [ \textZn 2+ \textL 2 - 1 \textL 20 ( \textH 2 \textO ) 2 ] \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] complex.  相似文献   

14.
15.
We present evidence that oxygen consumption (V\textO2 ) (V_{{{\text{O}}_{2} }} ) is oxygen partial pressure (P\textO2 ) (P_{{{\text{O}}_{2} }} ) dependent in striated muscles and P\textO2 P_{{{\text{O}}_{2} }} -independent in the vasculature in representatives of three craniate taxa: two teleost fish, a hagfish and a rat. Blood vessel V\textO2 V_{{{\text{O}}_{2} }} displayed varying degrees of independence in a P\textO2 P_{{{\text{O}}_{2} }} range of 15–95 mmHg, while V\textO2 V_{{{\text{O}}_{2} }} by striated muscle tissue slices from all species related linearly to P\textO2 P_{{{\text{O}}_{2} }} between 0 and 125 mmHg, despite V\textO2 V_{{{\text{O}}_{2} }} rates varying greatly between species and muscle type. In salmon red muscle, lactate concentrations fell in slices incubated at a P\textO2 P_{{{\text{O}}_{2} }} of either 30 or 100 mmHg, suggesting aerobic rather than anaerobic metabolism. Consistent with this finding, potential energy, a proxy of ATP turnover, was P\textO2 P_{{{\text{O}}_{2} }} -dependent. Our data suggest that the reduction in V\textO2 V_{{{\text{O}}_{2} }} with falling P\textO2 P_{{{\text{O}}_{2} }} results in a decrease in ATP demand, suggesting that the hypoxic signal is sensed and cellular changes effected. Viability and diffusion limitation of the preparations were investigated using salmon cardiac and skeletal muscles. Following the initial P\textO2 P_{{{\text{O}}_{2} }} depletion, reoxygenation of the Ringer bathing salmon cardiac muscle resulted in V\textO2 \texts V_{{{\text{O}}_{2} }} {\text{s}} that was unchanged from the first run. V\textO2 V_{{{\text{O}}_{2} }} increased in all muscles uncoupled with p-trifluoromethoxylphenyl-hydrazone (FCCP) and 2,4-dinitrophenol (DNP). Mitochondrial succinate dehydrogenase activity, quantified by reduction of 3-(4,5-dimethylthiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to formazan, was constant over the course of the experiment. These three findings indicate that the tissues remained viable over time and ruled out diffusion-limitation as a constraint on V\textO2 V_{{{\text{O}}_{2} }} .  相似文献   

16.
A series of 35 triazolopyrimidine analogues reported as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors were optimized using quantum mechanics methods, and their binding conformations were studied by docking and 3D quantitative structure–activity relationship studies. Genetic algorithm-based criteria was adopted for selection of training and test sets while maintaining structural diversity of training and test sets, which is also very crucial for model development and validation. Both the comparative molecular field analyses ( q\textLOO2 = 0.841 q_{\text{LOO}}^2 = 0.{841} , r\textncv2 = 0.99 r_{\text{ncv}}^2 = 0.{99} ) and comparative molecular similarity indices analyses ( q\textLOO2 = 0.757 q_{\text{LOO}}^2 = 0.{757} , r\textncv2 = 0.943 r_{\text{ncv}}^2 = 0.{943} ) show excellent correlation and high predictive power. Furthermore, molecular dynamics simulations were performed to explore the binding mode of the two of the most active compounds of the series, 10 and 14. Harmonization in the two simulation results validate the analysis and therefore applicability of docking parameters based on crystallographic conformation of compound 14 bound to receptor molecule. This work provides useful information about the inhibition mechanism of this class of molecules and will assist in the design of more potent inhibitors of PfDHODH.  相似文献   

17.
Araucaria angustifolia is an endangered tropical/subtropical coniferous of great interest for conservation due its economical, ecological, and social value. Only 3% of original Araucaria forests remain, which are generally confined to small forest fragments. Forest fragmentation can have serious consequences on genetic process in tree population, affecting long-term fitness and adaptability. To investigate the effects of forest fragmentation on genetic diversity and the structure of A. angustifolia populations, the genetic diversity of eight microsatellite loci was compared in four small fragmented populations (<22 ha), four tree groups (five to 11 trees) occurring in pastures and in three plots in a large continuous population. The clearest effect of fragmentation was the loss of rare alleles (p ≤ 0.05) in fragmented populations (19.4% to 47.2%) and intermediate frequency (0.05 < p ≤ 0.25) and rare alleles (p ≤ 0.05) in tree groups (19% to 86.1%) in comparison to continuous populations. Fragmented populations have significant higher fixation index ( [^(F)]\textIS = 0.121 \widehat{F}_{\text{IS}} = 0.121 , P < 0.05) than continuous populations ( [^(F)]\textIS = 0.083 \widehat{F}_{\text{IS}} = 0.083 , P < 0.05). High genetic differentiation was detected among tree groups ( [^(G)]\textST = 0.258 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.258 , P < 0.01) and low among fragments ( [^(G)]\textST = 0.031 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.031 , P < 0.05) and continuous populations ( [^(G)]\textST = 0.026 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.026 , P < 0.05), showing a significant bottleneck effect in tree groups. Evidence that forest fragments have experienced a recent bottleneck was confirmed in at least two studied fragments. The implications of the results for conservation of the fragmented A. angustifolia populations are discussed.  相似文献   

18.
We explored the ability of a two-site, three-barrier (2S3B) Eyring model to describe recently reported data on current flow through open CaV3.1 T-type calcium channels, varying Ca2+ and Ba2+ over a wide range (100 nm–110 mm) while recording whole-cell currents over a wide voltage range (−150 mV to +100 mV) from channels stably expressed in HEK 293 cells. Effects on permeation were isolated using instantaneous current–voltage relationships (IIV) after strong, brief depolarizations to activate channels with minimal inactivation. Most experimental results were reproduced by a 2S3B model. The model described the IIV relationships, apparent affinities for permeation and block for Ca2+ and Ba2+, and shifts in reversal potential between Ca2+ and Ba2+. The fit to block by 1 mm  \textMg2+\texti {\text{Mg}}^{2+}_{\text{i}} was reasonable, but block by \textMg2+\texto {\text{Mg}}^{2+}_{\text{o}} was described less well. Surprisingly, fits were comparable with strong ion–ion repulsion, with no repulsion, or with intermediate values. With weak repulsion, there was a single high-affinity site, with a low-affinity site near the cytoplasmic side of the pore. With strong repulsion, the net charge of ions in the pore was near +2 over a relatively wide range of concentration and voltage, suggesting a knockoff mechanism. With strong repulsion, Ba2+ preferred the inner site, while Ca2+ preferred the outer site, potentially explaining faster entry of Ni2+ and other pore blockers when Ba2+ is the charge carrier.  相似文献   

19.
The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an \textE\textr \textC\texti {\text{E}}_{\text{r}} {\text{C}}_{\text{i}}^{\prime } catalytic mechanism. An intermolecular electron transfer rate constant of (4 ± 1) × 105 M−1 s−1 was estimated for both forms of the enzyme, as well as a similar Michaelis–Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.  相似文献   

20.
The effects of oxygen partial pressure ( P\textO2 P_{{{\text{O}}_{2} }} ) on development and respiration were investigated in the eggs of the Australian lungfish, Neoceratodus forsteri. At 20°C, embryonic survival and development was optimal at 15 and 20.9 kPa. Development was slowed at 5 and 10 kPa and embryos did not survive 2 kPa. At lower P\textO2 P_{{{\text{O}}_{2} }} , the rate of oxygen consumption also decreased. Embryos responded to hypoxia by hatching at an earlier age and stage of development, and hatching wet and dry gut-free masses were reduced. The role of oxygen conductance ( G\textO2 G_{{{\text{O}}_{2} }} ) in gas exchange was also examined under selected environmental P\textO2 P_{{{\text{O}}_{2} }} and temperatures. The breakdown of the vitelline membrane changed capsule geometry, allowed water to be absorbed into the perivitelline space and increased capsule G\textO2 G_{{{\text{O}}_{2} }} . This occurred at embryonic stage 32 under all treatments and was largely independent of both P\textO2 P_{{{\text{O}}_{2} }} and temperature (15, 20 and 25°C), demonstrating that capsule G\textO2 G_{{{\text{O}}_{2} }} cannot adaptively respond to altered environmental conditions. The membrane breakdown increased capsule diffusive G\textO2 G_{{{\text{O}}_{2} }} and stabilised perivitelline P\textO2 P_{{{\text{O}}_{2} }} , but reduced the convective G\textO2 G_{{{\text{O}}_{2} }} of the perivitelline fluid, as the large perivitelline volume and inadequate convective current resulted in a P\textO2 P_{{{\text{O}}_{2} }} gradient within the egg prior to hatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号