首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Natural killer (NK) cells are important players of innate immunity, dedicated to the host defense against viruses and also involved in the immune surveillance of tumors. NK cells are widely distributed in the body and their number may increase locally during infection. They develop mainly in the bone marrow and perhaps in other lymphoid organs. They are constantly renewed, with a half-life of about 17 days at the periphery. In this article, we review the factors that regulate the homeostasis of NK cells including their development, differentiation, export to the periphery, their turnover, their homeostatic or antigen-induced proliferation and their survival before or after activation. In addition, we discuss the homeostasis of recently described so-called "memory" NK cells.  相似文献   

4.
Trafficking of natural killer cells   总被引:5,自引:0,他引:5  
Natural killer (NK) cells comprise a set of lymphocytes that is capable of mediating innate immune responses to viral infections, malignancies, and allogeneic bone marrow grafts. This review summarizes what is known about the mechanisms NK cells use to arrive at their sites of action. NK cells express a wide array of adhesion molecules including alphaLbeta2, alphaMbeta2, alphaXbeta2, and alpha4beta1 integrins, ICAM-1, PSGL-1, and L-selectin. Like other immune and inflammatory cells, NK cells use the blood circulation to enter tissues and organs, which requires that they interact with the vessel wall under flow conditions, arrest, and transmigrate. NK cells are able to chemotax to a variety of cytokines and chemokines, including IL-12, IFN-(alpha/beta, CCL2, 3, 4, 5, 7, 8, CXCL8, and CX3CL1. In many cases, NK cells appear to migrate towards these soluble factors without any kind of priming. These cells also appear to distribute in secondary and tertiary lymphoid sites (i.e., spleen, bone marrow, liver, lung, and lymph nodes) both with and without stimulation. In addition to their ability to move throughout the body in an unprimed state, activated NK cells may have increased specificity in homing to sites of inflammation. NK cells not only react to, but also produce IFN-gamma, TNF-alpha, GM-CSF, CCL3, CCL4, and CCL5, enabling them to recruit various immune cells to sites of immune response.  相似文献   

5.
6.
Natural killer (NK) cells, similar to other lymphocytes, acquire tolerance to self. This means that NK cells have the potential to attack normal self cells but that there are mechanisms to ensure that this does not usually occur. Self-tolerance is acquired by NK cells during their development, but the underlying molecular and cellular mechanisms remain poorly understood. Recent studies have produced important new information about NK-cell self-tolerance. Here, we review the evidence for and against possible mechanisms of NK-cell self-tolerance, with an emphasis on the role of MHC-specific receptors.  相似文献   

7.
Immunoregulation by natural killer cells   总被引:3,自引:0,他引:3  
Polyinosinic-polycytidilic acid (poly (I:C], a synthetic analog of viral double-stranded RNA (dsRNA), activates natural killer (NK) cells and inhibits induction or promotes termination of the primary IgM response in vivo. Suppression of responses was reproduced in vivo by interferons (IFN) which activate NK cells and in vitro by cells enriched for NK cells. The likelihood that NK cells may be involved in the normal regulation of IgM responses is supported by the following observations: immunization itself induces NK activity at times appropriate to account for termination, NK cells activated by immunization suppress in vitro, mice with high NK activity induced by immunization with one antigen have reduced responses to immunization with a second antigen, and mice with induced loss of NK activity fail to down-regulate IgM antibody responses normally.  相似文献   

8.
9.

Introduction

Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity.

Methods

We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses.

Results

In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003).

Conclusions

In patients with antibiotic-responsive arthritis, the high percentage of activated, IFN-γ-producing CD56bright NK cells in SF and the presence of iNKT cells suggest that these cells still have a role in spirochetal killing late in the illness. In patients with antibiotic-refractory arthritis, the frequencies of IFN-γ-producing CD56bright and CD56dim NK cells remained high in SF, even after spirochetal killing, suggesting that these cells contribute to excessive inflammation and immune dysregulation in joints, and iNKT cells, which may have immunomodulatory effects, were often absent.  相似文献   

10.
Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.  相似文献   

11.
The present study was designed to examined the dynamics of splenic natural killer (NK) cells under two conditions of enhanced NK cell activity: (1) CBA/J mice given polyinosinic-polycytidylic acid (poly-I:C), an NK-cell-enhancing agent, and 62) untreated athymic nude (nu/nu) mice. The 'total NK cell activity' of the spleen (percentage specific lysis corrected for changes in organ cellularity) increased 5-fold and 2.7-fold after poly-I:C treatment for 1 day and 4 days, respectively. An injection of hydroxyurea (HU), a cell-cycle-toxic drug, given together with either poly-I:C or saline to CBA/J mice resulted in both cases in a 25% reduction in total NK cell activity 1 day later. This suggests that the renewal rate of nondividing NK cells is similar in poly-I:C-treated and saline-injected mice, and that the NK-enhancing effect of poly-I:C is not due to a stimulation of proliferation among NK cell precursors. HU administered simultaneously with poly-I:C or saline for 4 days eliminated NK cell activity in both cases, indicating that spleen NK cell activity is mediated almost entirely by newly formed (less than or equal to 4 days) cells. In nude mice, NK cell activity was assayed at various intervals after an HU depletion period of 2 days. NK depletion was initially more rapid in nu/nu mice than in control (nu/+) mice, although equally profound, and the subsequent recovery of NK cell activity after cessation of HU was also more rapid than in control (nu/+) mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pretreatment of mice with rabbit anti-asialo GM1 removes both natural killer (NK) effector cells and NK cells responsive to interleukin 2 (IL-2). Spleen cells from these mice do possess normal lymphokine-activated killer (LAK) activity. Young mice (less than 3 weeks of age) do not have NK activity and do not possess IL-2-inducible NK effector cells. Similarly to anti-asialo GM1-treated mice, LAK cells can be generated from these mice. While these experiments indicate clear distinctions between a certain level of NK and LAK precursors, the distinctions are not as clear when analyzing mice congenitally deficient in NK cells. Beige mice which lack NK effector cells and IL-2-inducible NK cells also lack the ability to generate LAK cells. The relationships and differences between NK- and LAK-cell precursors and effectors are discussed.  相似文献   

13.
A 4-h in vivo cytotoxicity assay was used to study the fate of implanted IL-2-generated, lymphokine-activated killer (LAK) cells in mice undergoing an activated NK cell response. 125Iododeoxyuridine-labeled LAK cells were rejected from selected organs of C57BL/6 mice infected with lymphocytic choriomeningitis virus or treated with IL-2 or the IFN inducer poly I:C. This rejection was abrogated by the selective depletion of NK cells with antibodies to asialo-GM1 and NK1.1 Ag. Similar results were noted when LAK cells were generated from the spleens of B and T cell-deficient severe combined immunodeficiency mice and when LAK cells were implanted into severe combined immunodeficiency mice. These data indicate that NK cells activated by virus infections or by IL-2 infusions directly or indirectly eliminate implanted LAK cells. Because LAK cells are used in the treatment of certain human cancers, the strategy of accompanying this therapy with IL-2 infusions should be reassessed in light of these results.  相似文献   

14.
As a part of the innate immune system, natural killer (NK) cells are cytotoxic lymphocytes that can exert cytotoxic activity against infected or transformed cells. Furthermore, due to their expression of a functional Fc receptor, they have also been eluded as a major effector fraction in antibody-dependent cellular cytotoxicity. These characteristics have led to multiple efforts to use them for adoptive immunotherapy against various malignancies.  There are now at least 70 clinical trials testing the safety and efficacy of NK cell products around the world in early-phase clinical trials. NK cells are also being tested in the context of tumor retargeting via chimeric antigen receptors, other genetic modification strategies, as well as tumor-specific activation strategies such as bispecific engagers with or without cytokine stimulations. One advantage of the use of NK cells for adoptive immunotherapy is their potential to overcome HLA barriers. This has led to a plethora of sources, such as cord blood hematopoietic stem cells and induced pluripotent stem cells, which can generate comparatively high cytotoxic NK cells to peripheral blood counterparts. However, the variety of the sources has led to a heterogeneity in the characterization of the final infusion product. Therefore, in this review, we will discuss a comparative assessment strategy, from characterization of NK cells at collection to final product release by various phenotypic and functional assays, in an effort to predict potency of the cellular product.  相似文献   

15.
In several mouse models, natural killer T cells have recently been found to be required for the development of airway hyper-reactivity, a cardinal feature of asthma. Moreover, in patients with chronic asthma, natural killer T cells with a T-helper-2-like phenotype (that is, that express CD4 and produce T helper 2 cytokines) are present in the lungs in large numbers. In this Opinion article, we suggest that natural killer T cells, which express a restricted T-cell receptor and respond to glycolipids rather than protein antigens, have a previously unsuspected but crucial role, distinct from that of T helper 2 cells, in the pathogenesis of asthma.  相似文献   

16.
The liver lymphocyte population is enriched with natural killer (NK) cells, which play a key role in host defense against viral infection and tumor transformation. Recent evidence from animal models suggests that NK cells also play an important role in inhibiting liver fibrosis by selectively killing early or senescence activated hepatic stellate cells (HSCs) and by producing the anti-fibrotic cytokine IFN-γ. Furthermore, clinical studies have revealed that human NK cells can kill primary human HSCs and that the ability of NK cells from HCV patients to kill HSCs is enhanced and correlates inversely with the stages of liver fibrosis. IFN-α treatment enhances, while other factors (e.g., alcohol, TGF-β) attenuate, the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver fibrogenesis. In addition, the mouse liver lymphocyte population is also enriched for natural killer T (NKT) cells, whereas human liver lymphocytes have a much lower percentage of NKT cells. Many studies suggest that NKT cells promote liver fibrogenesis by producing pro-fibrotic cytokines such as IL-4, IL-13, hedgehog ligands, and osteopontin; however, NKT cells may also attenuate liver fibrosis under certain conditions by killing HSCs and by producing IFN-γ. Finally, the potential for NK and NKT cells to be used as therapeutic targets for anti-fibrotic therapy is discussed. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

17.
A mAb, porcine NK-inhibitory mAb (PNK-I) that inhibits porcine NK activity without affecting antibody-dependent cellular cytotoxicity (ADCC) has been developed. PNK-I acts at the level of the effector cell and inhibition of NK activity is independent of complement. Inhibitory effects are seen against various human and murine NK-susceptible targets. Addition of PNK-I antibody up to 60 min after assay initiation was effective at inhibiting NK activity. Furthermore PNK-I does not inhibit E:T conjugation and inhibits during the Ca2(+)-dependent phase of NK cytolysis. PNK-I Ag is present on virtually all PBL showing a bimodal distribution with 74% "dim" and 15% "bright" by flow cytometry. Monocytes and granulocytes stain with an intermediate intensity with greater than 90% and 95% staining positively, respectively. F(ab')2 fragments of PNK-I antibody show identical staining and functional activity as the whole molecule indicating that PNK-I acts independently of FcR. PNK-I immunoprecipitates molecules of molecular mass of 166, 155, 95 kDa under reducing and nonreducing conditions. PNK-I appears to be recognizing an epitope on a CD18 molecule. The CD18 molecule (beta-chain of CD11a,b,c) is ubiquitous on the surface of leukocytes and is implicated in a variety of cellular functions. Dim and bright populations were sorted and assessed functionally for NK and ADCC activity. It is demonstrated that PNK-I+ bright lymphocytes contain all detectable NK and ADCC activity in porcine PBL. Furthermore PNK-I+ bright lymphocytes contain the cytokine responsive NK cells capable of stimulation by IL-2, porcine NK-activating factor, and porcine natural killer-enhancing mAb. PNK-I+ dim cells were devoid of all baseline as well as inducible NK and ADCC activity. Giemsa stain of sorted populations show PNK-I+ bright cells containing the large granular lymphocytes whereas dim are devoid of these. Two color analysis show that PT4+ cells are PNK-I+ dim whereas PT8+ lymphocytes are divided between PNK-I+ bright and dim populations. Our results indicate that we are able to isolate all active as well as inducible NK and ADCC effector cells from porcine PBL based on relative Ag expression of CD18. Therefore quantitative as well as qualitative antigen expression is important in NK/ADCC-mediated cytotoxicity.  相似文献   

18.
Su XY  Huang J  Jiang Y  Tang Y  Li GD  Liu WP 《Cytopathology》2012,23(2):96-102
X.‐Y. Su, J. Huang, Y. Jiang, Y. Tang, G.‐D. Li and W.‐P. Liu Serous effusion cytology of extranodal natural killer/T‐cell lymphoma Objective: Extranodal natural killer/T‐cell lymphoma, nasal type (ENKTCL‐N), is a rare form of lymphoma that typically occurs at extranodal sites. It is one of the most common extranodal lymphomas in China. Literature on effusions and cytological findings relating to ENKTCL‐N is limited. We studied five consecutive cases of ENKTCL‐N effusions collected over a 3‐year period. The cytomorphological, immunocytochemical and molecular biological features were evaluated with literature review. The purpose of this study is to discuss how to diagnose ENKTCL‐N cytologically in effusions. Methods: Smears and cell block sections were reviewed for each case. Immunocytochemistry was performed on 4‐μm paraffin sections. Antibodies used were as follows: cCD3 (intracytoplasmic CD3), CD45RO, surface CD3, CD20, CD79a, CD56, TIA‐1, granzyme B, CD30, CD99, TdT and Ki‐67. In situ hybridization for EBER1/2 (EBER‐ISH) and T‐cell receptor γ (TCRγ) gene rearrangement were performed for all cases. Results: Large to medium‐sized tumour cells with pleomorphic nuclei and coarse chromatin were found in a necrotic background in all cases. The cytoplasm of the tumour cells was scant to moderately abundant with occasional cytoplasmic projections; in Giemsa‐stained smears, fine granules were present in some tumour cells. Mitotic figures were frequent. The tumour cells were all positive for CD56, granzyme B, TIA‐1 and cCD3, and were negative for surface CD3, CD20 or CD79a, CD99 and TdT. The MIB index was 50–80%. Epstein‐Barr virus‐encoded RNA (EBER) hybridizing signals were detected for most neoplastic cells. The T‐cell receptor gamma gene rearrangement analysis showed germ‐line configuration, except for one case. Conclusions: Effusion cytology may be appropriate for establishing the diagnosis of ENKTCL‐N, particularly for patients in whom tissue biopsy is not possible.  相似文献   

19.
20.
The coculture of rat bone marrow cells with recombinant interleukin-2 induced the generation of cells mediating natural killer (NK) activity and subsequent lymphokine-activated killer (LAK) activity depending upon the dose of IL-2 and time of culture. NK activity was detected as early as 4 to 5 days after the addition of IL-2 and could be evoked with as little as 5 to 50 U/ml. The induced NK cells had large granular lymphocyte (LGL) morphology and expressed 0X8 and asialo GM1 surface markers but did not express 0X19 or W3/25 markers. LAK activity was detected only after 5 days of culture, and required above 100 U/ml IL-2. Cells mediating LAK activity also expressed 0X8 and asialo GM1 but not 0X19. The generation of detectable NK and subsequent LAK activity was due to induction of early progenitor cells and not contaminating mature LGL/NK cells within the bone marrow population since of removal of such mature NK cells with L-leucine methyl ester (L-LME) did not affect the subsequent generation of either activity. Moreover, the removal of actively dividing cells as well as mature NK cells from the bone marrow by treatment with 5-fluorouracil (5-FU) in vivo enriched the remaining bone marrow population for both NK and LAK progenitor cells. The phenotype of the L-LME- and 5-FU-resistant NK and LAK progenitor cells within populations of bone marrow was determined by antibody plus complement depletion analysis. Although treatment of normal bone marrow with anti-asialo GM1 + C reduced the induction of NK and LAK activity in 5-day cultures, treatment of 5-FU marrow with anti-asialo GM1 + C did not affect either activity. Treatment with a pan-T cell antibody + C did not affect the development of NK or LAK activity under any conditions. Thus, the 5-FU-resistant NK/LAK progenitors were asialo GM1 negative but became asialo GM1+ after induction by IL-2. Finally, evidence that bone marrow-derived LAK cells were generated directly from the IL-2-induced NK cells was obtained by treating the IL-2-induced LGL/NK cells with L-LME.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号