首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some biochemical properties of actomyosin and myosin from elasmobranchs, Squalus acanthias and Raja tengu are compared with those of a freshwater (Cyprinus carpio) and a marine teleost (Seriola quinquiradiata). Whereas Ca2+-ATPase of teleost actomyosins are more stable in the absence of urea, the reverse is true for elasmobranchs up to 1.0 M urea. In contrast to that of teleosts, the Mg2+-ATPase of S. acanthias actomyosin shows an activation in the presence of urea, where as that of R. tengu persists. Below 1.0 M urea, there is low incorporation of DTNB into thiols of elasmobranch myosins, and losses in alpha-helicity are reversible up to 5.0 M urea. The results, thus, demonstrate that for a certain concentration of urea, elasmobranch myofibrillar proteins may exhibit a group specific tolerance to urea.  相似文献   

2.
We investigated the influence of environments with different average temperatures and different salinities on plasma NEFA in elasmobranchs by comparing species from tropical vs. cold temperate marine waters, and tropical freshwater vs. tropical marine waters. The influence of the environment on plasma NEFA is significant, especially with regard to essential fatty acids (EFA) and the n-3/n-6 ratio. n-3/n-6 ratios in tropical marine elasmobranchs were lower by two-fold or more compared with temperate marine elasmobranchs, because of higher levels of arachidonic acid (AA, 20:4n-6) and docosatetraenoic acid (22:4n-6), and less docosahexaenoic acid (DHA, 22:6n-3), in the tropical species. These results are similar to those in earlier studies on lipids in teleosts. n-3/n-6 ratios and levels of EFA were similar between tropical freshwater and tropical marine elasmobranchs. This suggests that the observation in temperate waters that marine fishes have higher levels of n-3 fatty acids and n-3/n-6 ratios than freshwater fishes may not hold true in tropical waters, at least in elasmobranchs. It also suggests that plasma NEFA are little affected by freshwater vs. seawater adaptation in elasmobranchs. Likewise, we found that plasma NEFA composition and levels were not markedly affected by salinity acclimation (2 weeks) in the euryhaline stingray Himantura signifer. However, in contrast to our comparisons of freshwater-adapted vs. marine species, the level of n-3 fatty acids and the n-3/n-6 ratio were observed to significantly decrease, indicating a potential role of n-3 fatty acids in salinity acclimation in H. signifer.  相似文献   

3.
The contributions of Peter Hochachka to the development of comparative and adaptational biochemistry are substantial. In particular, he and his academic offspring made major contributions to the understanding of the metabolism of molluscs and fishes. These two large taxonomic groups each have marine, freshwater and terrestrial/semiterrestrial representatives, and their mitochondrial metabolism has been shaped by these environmental conditions. In particular, the importance of amino acids and lipids as energy sources has interesting correlations with the environment and the osmotic strategy used. In marine molluscs, amino acids are important aerobic energy sources, and are used as osmolytes and participate in anaerobic metabolism. In marine elasmobranchs, amino acids and ketone bodies, but not lipids per se, are important energy sources in extrahepatic tissues. Marine and freshwater teleost fish by contrast use lipids as an extrahepatic energy source with minimal use of ketone bodies. Furthermore, ketone bodies are important in the metabolism of freshwater and terrestrial but not marine molluscs. The bases for these different metabolic plans may lie in the solute systems used by the different groups (e.g. amino acids in marine molluscs and urea in marine elasmobranchs). The various metabolic options used by fishes and molluscs indicate the plasticity of metabolic design in an environmental context.  相似文献   

4.
We investigated the influence of environments with different average temperatures and different salinities on plasma NEFA in elasmobranchs by comparing species from tropical vs. cold temperate marine waters, and tropical freshwater vs. tropical marine waters. The influence of the environment on plasma NEFA is significant, especially with regard to essential fatty acids (EFA) and the n-3/n-6 ratio. n-3/n-6 ratios in tropical marine elasmobranchs were lower by two-fold or more compared with temperate marine elasmobranchs, because of higher levels of arachidonic acid (AA, 20:4n-6) and docosatetraenoic acid (22:4n-6), and less docosahexaenoic acid (DHA, 22:6n-3), in the tropical species. These results are similar to those in earlier studies on lipids in teleosts. n-3/n-6 ratios and levels of EFA were similar between tropical freshwater and tropical marine elasmobranchs. This suggests that the observation in temperate waters that marine fishes have higher levels of n-3 fatty acids and n-3/n-6 ratios than freshwater fishes may not hold true in tropical waters, at least in elasmobranchs. It also suggests that plasma NEFA are little affected by freshwater vs. seawater adaptation in elasmobranchs. Likewise, we found that plasma NEFA composition and levels were not markedly affected by salinity acclimation (2 weeks) in the euryhaline stingray Himantura signifer. However, in contrast to our comparisons of freshwater-adapted vs. marine species, the level of n-3 fatty acids and the n-3/n-6 ratio were observed to significantly decrease, indicating a potential role of n-3 fatty acids in salinity acclimation in H. signifer.  相似文献   

5.
Unprecedented rates of species extinctions have prompted extensive research into the consequences of biodiversity losses on ecosystem functioning. While aquatic species are most threatened, research with freshwater and marine model systems has lagged behind progress made in terrestrial environments. This editorial to a special feature summarizes the main outcomes of a conference aimed at setting the stage for exploring the potential of aquatic systems to assess the role of biodiversity in ecosystem functioning. This series of papers proposes fresh approaches to the study of biodiversity effects on ecosystem functioning, outlines a new way of analyzing experimental data, presents a model that considers scale as an important factor determining outcomes, explores the effects of multiple stressors on species richness and ecosystem processes, and develops a food-web perspective that relates ecosystem properties to biodiversity. An insightful synthesis of lessons learned from aquatic systems is premature at present, but the papers clearly demonstrate the role that marine and freshwater systems can play in resolving open questions. The implications go well beyond the biodiversity in, and functioning of, ecosystems shaped by free-flowing or standing water.  相似文献   

6.
Kånneby, T., Todaro, M. A., Jondelius, U. (2012). Phylogeny of Chaetonotidae and other Paucitubulatina (Gastrotricha: Chaetonotida) and the colonization of aquatic ecosystems. —Zoologica Scripta, 42, 88–105. Chaetonotidae is the largest family within Gastrotricha with almost 400 nominal species represented in both freshwater and marine habitats. The group is probably non‐monophyletic and suffers from a troubled taxonomy. Current classification is to a great extent based on shape and distribution of cuticular structures, characters that are highly variable. We present the most densely sampled molecular study so far where 17 of the 31 genera belonging to Chaetonotida are represented. Bayesian and maximum likelihood approaches based on 18S rDNA, 28S rDNA and COI mtDNA are used to reconstruct relationships within Chaetonotidae. The use of cuticular structures for supra‐specific classification within the group is evaluated and the question of dispersal between marine and freshwater habitats is addressed. Moreover, the subgeneric classification of Chaetonotus is tested in a phylogenetic context. Our results show high support for a clade containing Dasydytidae nested within Chaetonotidae. Within this clade, only three genera are monophyletic following current classification. Genera containing both marine and freshwater species never form monophyletic clades and group with other species according to habitat. Marine members of Aspidiophorus appear to be the sister group of all other Chaetonotidae and Dasydytidae, indicating a marine origin of the clade. Halichaetonotus and marine Heterolepidoderma form a monophyletic group in a sister group relationship to freshwater species, pointing towards a secondary invasion of marine environments of these taxa. Our study highlights the problems of current classification based on cuticular structures, characters that show homoplasy for deeper relationships.  相似文献   

7.
Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the ‘osmoregulatory ballast’ of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments. However, more recent investigations have demonstrated that, at least in some species, this may not be the case. Gradual acclimation of marine dwelling elasmobranchs to varying environmental salinities under laboratory conditions has demonstrated that these fish do have the capacity to acclimate to changes in salinity through independent regulation of Na+, Cl and urea levels. This suggests that many of the presumed stenohaline marine elasmobranchs could in fact be described as partially euryhaline. The contributions of Thomas Thorson in the 1970s demonstrated the osmoregulatory strategy of a fully euryhaline elasmobranch, the bull shark, Carcharhinus leucas, and more recent investigations have examined the mechanisms behind this strategy in the euryhaline elasmobranch, Dasyatis sabina. Both partially euryhaline and fully euryhaline species utilise the same physiological processes to control urea, Na+ and Cl levels within the body fluids. The role of the gills, kidney, liver, rectal gland and drinking process is discussed in relation to the endocrine control of urea, Na+ and Cl levels as elasmobranchs acclimate to different environmental salinities.  相似文献   

8.
Synopsis Predation on large, energy rich eggs is common in terrestrial and freshwater communities with the eggs of amphibians, reptiles and birds figuring as prominant prey. We might predict that predation on large eggs would also be widespread in marine communities. However, little information is available to test this prediction. We present new evidence for such predation on elasmobranch eggs based on examination of capsules held in museum collections, those collected from beaches, long-term incubations of caged egg capsules, and SCUBA observation. The principal egg predators appear to be gastropods, though vertebrates contribute to mortality of embryonic elasmobranchs. As yet we can only speculate about the effects of egg predation for populations of oviparous elasmobranchs, or about the direct and indirect consequences predation upon their energy-rich eggs may have for marine communities.  相似文献   

9.
A hypothesis on the historical biogeography of the freshwater croakers, Plagioscion spp. (Teleostei: Sciaenidae), is developed based on data from the phylogeny of their monogenoidean parasites (Platyhelminthes), the geology of South America and the fossil record. Analyses suggest that the common ancestor of Plagioscion spp. colonized freshwater concomitantly with the common ancestor of their parasites, Euryhaliotrema spp. Colonization probably occurred via a marine transgression through western Venezuela that developed about 20 million years ago (Mya). This transgression with its postulated highly variable temporal and spatial salinity conditions most likely represented the facilitating event associated with freshwater colonization. A less likely alternative, that colonization occurred via the Mar del Plata in southern South America, is not supported by the geographical distributions and putative phylogeny of extant species of Plagioscion .  相似文献   

10.
Trimethylamine oxide (TMAO) is typically accumulated as an organic osmolyte in marine elasmobranchs to levels second only to urea (which can reach >400 mM); however, little is known about the whole animal regulation of TMAO in elasmobranchs. In the present study on the winter skate (Leucoraja ocellata), we determine whether this species can maintain levels of TMAO in the absence of feeding, and if so, is this due to endogenous synthesis or low whole animal losses. Winter skates maintain plasma TMAO levels for up to 45 days without feeding. The liver displays methimazole oxidation, which is consistent with the presence of flavin-containing monooxygenase (E.C. 1.14.13.8) activity, the class of enzymes responsible for the physiological oxygenation of trimethylamine (TMA) to TMAO in mammals. However, no evidence for TMA oxygenation by winter skates was found using in vivo or in vitro techniques, indicating no significant capacity for endogenous TMAO synthesis. Fed skates displayed low, but measurable ( approximately 4-13 micromol.kg(-1).h(-1)), efflux of TMAO (plus TMA), whereas fasted skates did not. Using the loss of injected [14C]TMAO, it was determined that whole animal TMAO losses are likely <1% of whole body TMAO per day. These results demonstrate that winter skates utilize low whole animal TMAO losses, rather than endogenous synthesis, to maintain TMAO levels when not feeding.  相似文献   

11.
We conducted salinity choice trials with the stenohaline marine species Takifugu snyderi to test their freshwater (FW) entry frequency in relation to starvation. The fish preferred to enter non-natal FW rather than remain in seawater. No relationship was detected between starvation and FW entry behaviour. Our results provide new empirical evidence of a stenohaline fish entering a non-natal osmotic environment. Further research on the entry of stenohaline species such as this one into lethal environments may help determine if this might help promote the evolution of diadromous life histories.  相似文献   

12.
Actinopterygii (ray‐finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of ‘fish’ evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic–Cainozoic interval. This approach provides information on the ‘fish’ fossil record quality and on the corrected ‘fish’ deep‐time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil‐like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early–Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene–Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous‐Paleogene extinction, we provide an in‐depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea‐levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on ‘fish’ evolutionary history, along with other biotic constraints.  相似文献   

13.
Globally, bycatch in tropical/subtropical shrimp trawl and longline fisheries is threatening many marine species. Here we examine the joint effects of increased mortality caused by shrimp trawling bycatch, and reduced predation caused by losses of large sharks because of longline fishing. Research surveys in the Gulf of Mexico (1972–2002) demonstrated precipitous declines in shallow water coastal elasmobranchs where shrimping effort was highest (bonnethead 96%, Bancroft's numbfish (lesser electric ray) 98%, smooth butterfly ray > 99%) and consistent increases in deeper water elasmobranchs (Atlantic angel shark, smooth dogfish). These increases are the first empirical support for predation release caused by the loss of large sharks, which have been theorized to structure tropical/subtropical marine ecosystems. Bycatch of elasmobranchs in shrimp trawls is a critical conservation concern which is not solved by present mitigation measures; similar loss of elasmobranchs is expected to be occurring in tropical/subtropical regions worldwide where ever intensive shrimp trawling occurs.  相似文献   

14.
Ionic and osmotic environment of developing elasmobranch embryos   总被引:1,自引:0,他引:1  
Synopsis The elasmobranchs display a variety of ionic and osmotic environments for developing embryos. Oviparous species protect their eggs with a tough, fibrous capsule which is highly permeable to ions and urea even at oviposition. Thus the embryonic tissues are bathed by a solution ionically similar to sea water. In the more advanced reproductive style ofSqualus acanthias (a lecithotrophic live bearer) early embryos in egg capsules are retained in utero and bathed in a solution osmotically similar to maternal plasma. Several months into the 22 month gestation period the embryos can iono- and osmoregulate in a uterine solution resembling sea water. Embryos of more advanced viviparous species develop in a solution that is ionically and osmotically similar to maternal plasma. Iono- and osmoregulation by these embryos would appear to be unnecessary. Clearly, in the oviparous elasmobranchs, the ability of the embryo to regulate salts and urea is present at the earliest stage of development. The need for elasmobranch embryos to regulate osmolytes was reduced or delayed as viviparity evolved.  相似文献   

15.
The classic Homer Smith divided box experiment (Smith, 1929) was repeated upon five marine and one freshwater teleost species. Of the nitrogenous output (as ammonia and urea), 50–70% occurred in the head region for marine teleosts, while the freshwater tilapia studied excreted 90% from the head. Together with the data of Smith, these data indicate that nitrogen excretion by the gills is of lesser importance in marine teleosts than in freshwater species.
In the dab, Limanda limanda , the head, anus and urinary opening were all in the anterior chamber of the divided box, but 47% of nitrogen excretion still occurred in the posterior chamber, presumably across the skin. In the blenny, Blennius pholis , exposed to air, the head region accounted for 46% of urea elimination, and 26% of ammonia output.  相似文献   

16.
Potamotrygon cf. histrix (cururu stingray) are endemic freshwater stingrays from the middle region of the Rio Negro in the Brazilian Amazon basin and are exported worldwide as ornamentals caught by artisanal fishermen. The transport process from capture to final destination is long and stressful. This study quantified stress related changes in corticosterone, blood and water samples (baseline, pre-transport, 3h, 12h and 24h) analyzed during a transport experiment which tested two water additives (tetracycline and the probiotic Efinol). There was a significant stepwise increase in corticosterone levels in stingrays over transport time in combination with osmoregulatory disturbances suggesting a stress related role of this corticosteroid. There were significant increases in water conductivity, Na(+) and K(+) losses and ammonia excretion. Blood parameters such as glucose, hematocrit, red blood count and urea did not change significantly during the experiment. Glucose levels did not increase significantly during transport and this may be due to the fact that other elasmobranchs have been shown to rely more on ketone bodies for energy rather than glucose and produce ammonia as their main nitrogenous waste. The mineralocorticoid action of this hormone has been shown in elasmobranchs and most likely plays a role in osmotic homeostasis. The use of probiotic and especially antibiotic should be avoided since no beneficial effects were observed.  相似文献   

17.
Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) electrophoretic tissue patterns of two different orders of Elasmobranchii: Carchariniformes (Galeus melanostomus and Prionace glauca) and Squaliformes (Etmopterus spinax and Scymnorinus licha) were studied. The number of loci expressed for these enzymes was the same of other elasmobranch species. Differences in tissue distribution were noted in LDH from G. melanostomus due to the presence of an additional heterotetramer in the eye tissue. There were also differences in MDH. In fact, all the tissues of E. spinax and G. melanostomus showed two mitochondrial bands. Major differences were noted in the number of isozymes detected in the four compared elasmobranchs. The highest polymorphism was observed in E. spinax and G. melanostomus, two species that live in changeable environmental conditions. The resistance of isozymes after urea treatment was examined; the resulting patterns showed a quite good resistance of the enzymes, higher for LDH than MDH, also at urea concentration much greater than physiological one. These results indicated that the total isozyme resistance can be considered higher in urea accumulators (such as elasmobranchs) than in the non-accumulators (such as teleosts).  相似文献   

18.
Synopsis Much of the freshwater biota on high Pacific islands is derived from marine ancestors. Traces of this marine origin are seen in the amphidromous life history patterns of these species. Investigation of the habitat utilization of an assemblage of freshwater gobies in the Hawaiian Islands indicates some resource partitioning within this group. The three major stream species appear to exhibit distinct habitat preferences, which in conjunction with their longitudinal zonation in streams may have served to facilitate their colonization or co-existence.  相似文献   

19.
Studies of development time of marine and freshwater copepods have taken separate tracks. Most studies on marine copepods report development time of each individual development stage, whereas studies on freshwater copepods report only development time, from egg to nauplius and nauplius to adult. This bias allows comparison of total development time but prevents detailed comparisons of patterns in stage-specific developmental schedules. With respect to egg to adult development time, three general relationships are known: developmental rates are dependent upon temperature and food concentration but independent of terminal body size; freshwater calanoids develop significantly slower than marine calanoids; freshwater cyclopoids develop at the same rate as marine calanoids. Two rules describe stage-specific developmental rates: the equiproportional rule and the isochronal rule. The first rule states that the duration of a given life history stage is a constant proportion of the embryonic development time; the second rule states that the time spent in each stage is the same for all stages. This review focuses on the second rule. From the 80+ published studies of copepod stage-specific developmental times, no species follows the isochronal rule strictly: Acartia spp. come closest with isochronal development from third nauplius (N3) to fourth copepodite (C4). The only pattern followed by all species is rapid development of the first and/or second naupliar stages, slow development of the second and/or third nauplius and prolonged development of the final copepodite stage. Once adulthood is reached, males are usually short-lived, but females can live for weeks to months in the laboratory. Adult longevity in the sea is, however, on the order of only a few days. The evolution of developmental patterns is discussed in the context of physiological constraints, along with consideration of possible relationships between stage-specific mortality rates and life history strategies. Physiological constraints may operate at critical bottlenecks in development (e.g. at the first feeding nauplius, N6, and the fifth copepodite stage). High mortality of eggs may explain why broadcast eggs hatch 2–3 times faster than eggs carried by females in a sac; high mortality of adults may explain why adults do not grow rather they maximize their reproductive effort by partitioning all energy for growth into egg production.  相似文献   

20.
Freshwater, male Atlantic stingrays Dasyatis sabina , from Lake Jesup, Florida, U·S·A·, excreted a dilute urine similar in composition to freshwater teleosts and lampreys with the exception that urea was the primary osmolyte. Urine flow rate was 2·5 to 10 fold higher than that reported for freshwater teleosts resulting in high free-water clearance. Mass-specific free-water clearance values from euryhaline elasmobranchs inhabiting freshwater environments greatly exceed those for freshwater teleosts and are nearly equivalent to those of freshwater lampreys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号