首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Bromopyruvate inactivates 2-keto-3-deoxygluconate-6-P aldolase by a mechanism in which the reagent is incorporated by esterification. A tryptic peptide derived from inactivated enzyme has the sequence Thr-Leu-Glu1-Val-Thr-Leu-Arg. Derivatization of the γ-carboxyl of the single glutamate by bromopyruvate was confirmed by Lossen rearrangement in which the glutamate γ-ester was converted to 2,4-diamino butyrate.  相似文献   

2.
H P Meloche  C T Monti 《Biochemistry》1975,14(16):3682-3687
The enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase of Pseudomonas saccharophila is inactivated by the substrate analog beta-bromopyruvate, which satisfies several criteria of being an active site directed reagent. The inactivation exhibits saturation kinetics, and both bromopyruvate and pyruvate (substrate) compete for free enzyme. Upon prolonged incubation, inactivation is virtually complete. The Kinact for bromopyruvate is 12 mM and the minimum inactivation half-time is 16 min with a k of 0.0433 min minus 1. Bromopyruvate is also a substrate for the enzyme in that 3(R,S)-[3-3H2]bromopyruvate is asymmetrically detritiated by the enzyme yielding 3(S)-[3-3H,H]bromopyruvate concomitant with inactivation. At various concentrations of bromopyruvate which affect the inactivation rate, the ratio of nanomoles of bromopyruvate turned over/unit of enzyme inactivated remains constant averaging 12:1, consistent with both inactivation and catalysis occurring at a single protein site, the catalytic site. The above value does not take into account a possible hydrogen isotope effect and is not thus an absolute value. The stereochemistry of bromopyruvate turnover catalyzed by this enzyme is the same as that for 2-keto-3-deoxy-6-phosphogluconate aldolase of P. putida. This fact provides the first evidence that the pyruvate-specific portions of the two active sites may have evolved from a common precursor.  相似文献   

3.
2-Keto-3-deoxygluconate-6P (KDPG) aldolase ofPseudomonas putida mediates the cleavage of, as well as the condensation of, pyruvate andd-glyceraldehyde-3P (GaP) yielding, 2-keto-3-deoxygalactonate-6P (KDPGal) as side reactions of normal catalysis. These are visualized at high levels of aldolase. KDPGal cleavage occurs with aV max that is 1/5000 that for KDPG cleavage. TheKm for KDPGal is 0.2 mM, with aK i of 0.85 mM. The E-KDPGal complex is reductively inactivated having aKd of 0.55 mM. TheV/K value for KDPG cleavage is 2.0×108 sec?1, while the value for KDPGal cleavage is 1220 sec?1. The difference in first-order rate constants of 164,000-fold argues that a step in the cleavage of KDPGal mediated by the enzyme is uncatalyzed. The enzyme is reductively inactivated by trapping the E-pyruvate, E-KDPG, or E-KDPGal complex. The enzyme can also be inactivated by reductive trapping of a catalytically nonproductive E-glyceraldehyde-3P complex. This latter occurs with aKd for GaP of 20 mM and a rate constant equivalent to a limiting half-time of 1110 sec at 1 mM cyanoborohydride. Reductive inactivation half-times in the presence of high GaP/KDPG ratios were the sum of both E-GaP and E-KDPG trapping by cyanoborohydride so that the inactivation rate due to KDPG could be determined. It was found at 1 mM cyanoborohydride that the limiting half-time for the E-KDPG complex was 2382 sec. The corresponding value for the E-KDPGal complex was 215 sec. Consequently, the E-KDPGal complex is 11 times more sensitive to reductive derivativation than is the E-KDPG complex. This is interpreted to show that the enzyme binds the KDPGal in a “normal” step forming a ketimine. However, turnover to the eneamine with resultant C-C bond cleavage is uncatalyzed. For the case of KDPGal synthesized by KDPG aldolase, it is argued that the pyruvate eneamine is bound to the active site, which can be attacked by GaP with its aldehyde carbon in the catalytically nonproductive conformation as a side reaction, presumably forming a tertiary complex. Spontaneous protonation of the resultant alcoholate anion would generate KDPGal. The data are interpreted to support an argument that catalytic proton turnover at the OH of C-4 of KDPG is required for normal catalysis, and that this step, which catalytically interconverts ketimine/eneamine, imposes steric constraints controlling the overall stereochemistry of the reaction.  相似文献   

4.
2-Keto-3-deoxygluconate-6-P exists as an euqilibrium of three forms at 25 degrees measurable by 13C NMR: alpha-furanose anomer (41%), beta-furanose anomer (50%), and open chain keto (9%). The three forms are interconverted rapidly (greater than 0.5 s-1) so that the unidirectional rates of furanose ring opening and closing can be quantitated by an NMR line broadening method. The 2-keto-3-deoxygluconate aldolase is specific for only one of these forms, the open chain keto form. The rates for ring opening calculated from the rapid kinetic enzyme system compare closely with those obtained with the NMR method.  相似文献   

5.
2-Keto-3-deoxygluconate-6P aldolase ofPseudomonas putida mediates exchange between hydrogen isotope at the methylene carbon of 2-ketobutyrate and water. This occurs with aK m of 20 mM, 100 times the corresponding value for pyruvate, and a Vmax approximating 1/710 that of KDPG cleavage. Ketobutyrate is competitive with both pyruvate and 2-keto-3-deoxygluconate-6P for the enzyme. In addition, there is no evidence for C-C synthesis between ketobutyrate andd-glyceraldehyde-3P. A comparison of relativeV/K values for hydrogen exchange shows pyruvate to be 17,600 times better as a substrate than ketobutyrate. The detritiation of [3-3H]ketobutyrate is stereochemically random. In addition, the reaction proceeds with ak H/k T isotope effect of 15.3, consistent with C-H bond turnover being rate-determining. The E-ketobutyrate complex is reductively trapped, inactivating the enzyme. Reductive inactivation kinetics of E-ketobutyrate compared to E-pyruvate suggests more of the complex may be partitioned to ketimine in the ketobutyrate case than in the pyruvate case. A mechanism is considered in which ketobutyrate is bound as a ketimine in an orientation such that the active site acid/basic group cannot mediate catalytic ketimine/eneamine interconversion. Thus, exchange would result from hydrogen ionization at C-3′ of the ketimine, a slow spontaneous step compared to overall complex turnover. This noncatalyzed deprotonation would explain dissymmetry in exchange, the poorV/K compared to pyruvate, and a large tritium isotope effect.  相似文献   

6.
The reduction stereochemistry of the Schiff's base formed between pyruvate and the ?-amino of the catalytic lysine of 2-keto-3-deoxygluconate-6-P-phosphate aldolase of Pseudomonas putida was investigated. Reduction was stereoselective yielding 55.73% N6-[(1R)-and 44.27% N6-[(1S)-1-carboxyethyl]-S-lysine. Thus the reducing agent predominated slightly at the si face of the ketimine carbon. For comparison, the reduction stereochemistry of the pyruvate-lysine ketimine formed on d-amino acid oxidase during d-alanine turnover at pH 8.5 was also investigated. In this case reduction was random, consistent with nonactive site participation in that transimination reaction generating the ketimine, as postulated by other investigators of this enzyme.  相似文献   

7.
In Pseudomonas saccharophila 2-keto-3-deoxygalactonate-6-P aldolase (EC 4.1.2.21) is induced by growth on galatose while 2-keto-3-deoxygluconate-6-P aldolase (EC 4.1.2.14) is constitutive. These enzymes catalyze identical reactions except for the configuration fixed at C-4 during the condensation reaction. It was found with each enzyme that in a condensation between [3-3H3]pyruvate and D-glyceraldehyde-3-P, the respective condensation products were formed 8 to 10 times faster than tritium was released to water. Since pyruvate deprotonation is obligatory for condensation, the above result requires a hydrogen isotope effect in enolpyruvate formation, which must be then at least partially rate limiting for C--C synthesis. Further, condensation between D-glyceraldehyde-3-P and (3R)-[3-3H, 2H,H]pyruvate or (3S)-[3-3H, 2H,H]pyruvate, as catalyzed by each enzyme, enriched for (3R)- and (3S)-3-3H, 2H-labeled condensation product, respectively. Thus, each enzyme catalyzes C--C and C--H synthesis with retention of configuration at C-3. This shows that the active sites of both enzymes are asymmetric since solutes can only approach a single face of the bound pyruvyl enolate. In addition, the respective aldehyde specific portions of the two active sites must have opposite chiralities, with respect to each other, for correctly orienting the carbonyl faces of the incoming D-glyceraldehyde-3-P, to generate the correct configuration at C-4 of the respective condensation products.  相似文献   

8.
9.
The enzyme 2-keto-3-deoxygluconate-6-P aldolase of Pseudomonas putida is inactivated by one of the chiral forms of 2-keto-(3RS)-3-bromobutyric acid (bromoketobutyrate). The inactivation shows saturation kinetics and competition with pyruvate. The minimal inactivation half-time is 4 min and that concentration of bromoketobutyrate half-saturating the enzyme is 2 mM. (3RS)-[3-3H]bromoketobutyrate is catalytically detritiated during enzyme inactivation. A kinetic analysis of rates gave data consistent with both catalysis and inactivation occurring at a single protein site, the catalytic site. The enzyme only detritiates one of the two optical isomers of bromoketobutyrate, and that form which is detritiated also alkylates the catalytic site. The inactive isomer of reagent degrades, with inversion, to L-lactate so that the chiral form specific for the enzyme is 2-keto-(3S)-3-bromobutyrate. Thus, as is the case with bromopyruvate, the enzyme catalyzes protonation of the re face at C-3 of the enzyme-reagent eneamine. As a result, bromoketobutyrate could serve as a chiral probe for stereochemical constraints of selected pyruvate-specific lyase active sites.  相似文献   

10.
11.
12.
Summary KDPG aldolase has been crystallized from extracts of sucrosegrown cells of Pseudomonas saccharophila. KDPGal aldolase, which is absent in sucrose-grown cells but is present together with KDPG aldolase in galactose-grown cells has been purified over 1000-fold. The two enzymes share many common features, but possess absolute substrate specificity and are immunochemically distinct. The equilibrium constants for the catalyzed reactions have been determined and found to favor the synthesis of the 2-keto-3-deoxy-6-phosphohexonic acids.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday. It was in his laboratory that Pseudomonas saccharophila was isolated and first studied some thirty years ago. In spite of a firm faith in enrichment culture techniques and incantations learned at Pacific Grove, repeated attempts to reisolate the organism from nature have been unsuccessful. One wonders whether it was the Knallgas atmosphere used for the original enrichment or that unique atmosphere of the master's laboratory, only occasionally tainted with a whiff of H2S or mercury vapors, that nurtured this unique bacterium.This work was supported in part by a grant from the National Institutes of Health (AI-1808) and was conducted while the authors held tenure, respectively, as Postdoctoral Fellow and as Professor in the Miller Institute for Basic Research in Science at the University of California in Berkeley.  相似文献   

13.
14.
BACKGROUND: Aldolases are carbon bond-forming enzymes that have long been identified as useful tools for the organic chemist. However, their utility is limited in part by their narrow substrate utilization. Site-directed mutagenesis of various enzymes to alter their specificity has been performed for many years, typically without the desired effect. More recently directed evolution has been employed to engineer new activities onto existing scaffoldings. This approach allows random mutation of the gene and then selects for fitness to purpose those proteins with the desired activity. To date such approaches have furnished novel activities through multiple mutations of residues involved in recognition; in no instance has a key catalytic residue been altered while activity is retained. RESULTS: We report a double mutant of E. coli 2-keto-3-deoxy-6-phosphogluconate aldolase with reduced but measurable enzyme activity and a synthetically useful substrate profile. The mutant was identified from directed-evolution experiments. Modification of substrate specificity is achieved by altering the position of the active site lysine from one beta strand to a neighboring strand rather than by modification of the substrate recognition site. The new enzyme is different to all other existing aldolases with respect to the location of its active site to secondary structure. The new enzyme still displays enantiofacial discrimination during aldol addition. We have determined the crystal structure of the wild-type enzyme (by multiple wavelength methods) to 2.17 A and the double mutant enzyme to 2.7 A resolution. CONCLUSIONS: These results suggest that the scope of directed evolution is substantially larger than previously envisioned in that it is possible to perturb the active site residues themselves as well as surrounding loops to alter specificity. The structure of the double mutant shows how catalytic competency is maintained despite spatial reorganization of the active site with respect to substrate.  相似文献   

15.
16.
The structure of 2-keto-3-deoxy-6-phosphogluconate aldolase has been extended to 2.8 Å resolution from 3.5 Å resolution by multiple isomorphous replacement methods using three heavy-atom derivatives and anomalous Bijvoet differences to 6 Å resolution (〈m〉 = 0.72). The replacement phases were improved and refined by electron density modification procedures coupled with inverse transform phase angle calculations. A Kendrew model of the molecule was built, which contained all 225 residues of a recently determined amino acid sequence, whereas only 173 were accounted for at 3.5 Å resolution. The missing residues were found to be part of the interior of the molecule and not simply an appendage. The molecule folds to form an eight-strand α/β-barrel structure strikingly similar to triosephosphate isomerase, the A-domain of pyruvate kinase and Taka amylase. With a knowledge of the sequence, the nature of the interfaces of the two kinds of crystallographic trimers have been examined, from which it was concluded that the choice of trimers selected in the 3.5 Å resolution work was probably correct for trimers in solution. The active site region has been established from the position of the Schiff base forming Lys144 but it has not been possible to confirm it conclusively in independent derivative experiments. An apparent anomaly exists in the location of Glu56 (about 25 Å from Lys144). The latter has been reported to assist in catalysis.  相似文献   

17.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase is a key enzyme in the Entner-Doudoroff pathway of bacteria. It catalyzes the reversible production of KDPG from pyruvate and D-glyceraldehyde 3-phosphate through a class I Schiff base mechanism. On the basis of aldolase mechanistic pathway, various pyruvate analogues bearing beta-diketo structures were designed and synthesized as potential inhibitors. Their capacity to inhibit aldolase catalyzed reaction by forming stabilized iminium ion or conjugated enamine were investigated by enzymatic kinetics and UV-vis difference spectroscopy. Depending of the substituent R (methyl or aromatic ring), a competitive or a slow-binding inhibition takes place. These results were examined on the basis of the three-dimensional structure of the enzyme.  相似文献   

18.
19.
2-Keto-3-deoxygluconate aldolase of Aspergillus niger, an enzyme that has not been reported previously, was purified 468-fold. Maximal activity was obtained at pH 8.0 and 50 C. The enzyme exhibited relative stereochemical specificity with respect to glyceraldehyde. The Km values for 2-keto-3-deoxygluconate, glyceraldehyde, and pyruvate were 10, 13.3, and 3.0 mM, respectively. The effects of some compounds and inhibitors on enzyme activity were examined. Stability of the enzyme under different conditions was investigated. The equilibrium constant was about 0.33 X 10(-3) M.  相似文献   

20.
Two short local reconnections in the backbone chain tracing of 2-keto-3-deoxy-6-phosphogluconate aldolase suffice to make it an 8-stranded parallel β barrel whose size, shape, topology, and connection handedness match those of triose phosphate isomerase and of the first domain of pyruvate kinase. It is proposed that this singly-wound parallel β barrel is in fact the tertiary structure of the aldolase subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号