首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acute experiments on cats under nembutal-chloralose anaesthesia the evoked potentials and cellular reactions were studied of suprasylvian vestibular and auditory projection zones to stimulation of vestibular, acoustic and visual nerves and frontal paw. It has been shown that the suprasylvian vestibular zone represents the region of convergence of vestibular, auditory, somatic and visual afferentation. Properties of summary and cellular reactions of the vestibular zone and also the character of interaction of the evoked potentials of homo- and heteromodal origin testify to the absence of significant dominance of vestibular input to this area of the cerebral cortex in cats. Limitation of spreading of labyrinth activity in the cerebral cortex and the absence of dominance of homomodal input in the projection zone should, probably, be considered as typical property of the vestibular system presentation in the cortex, determining the disability of monomodal specific reaction in the sensory-perceptive sphere.  相似文献   

2.
Changes in the responsiveness of the auditory cortex to an acoustic click and to direct stimulation of the medial geniculate body were studied by the method of evoked potentials in an extended experiment on cats with implanted electrodes. It is shown that the minimum interval between two stimuli for which a second click produces an EP in the auditory cortex is from 30 to 50 msec. The relative refractory period consists of two parts. The first (50–100 msec) is characterized by a rapid recovery, and the second (about 500 msec) by a slow recovery. In contrast with a click, direct stimulation of the geniculate body does not produce a refractory condition but one of facilitation. The effects of Nembutal and chloralose anesthesia and the state of alertness on the recovery of auditory cortex responsiveness were investigated. The reason for the absence and the reduction of an EP from the auditory cortex to a testing click during absolute and relative refractory periods is not a passive decrease of excitability of the usual refractory kind, but an active interplay of excitatory and inhibitory processes in the cerebral cortex, geniculate bodies, and reticular formation of the brain stem.A. A. Bogomolets' Institute of Physiology, Academy of Sciences, Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 54–64, July–August, 1969.  相似文献   

3.
Acute experiments on cats anesthetized with chloralose and pentobarbital showed that excitation of fast-conducting (130 m/sec) reticulospinal fibers, arising during stimulation of the ipsilateral medullary reticular gigantocellular nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nerve nucleus. The EPSPs had latent periods of between 0.6 and 1.0 msec (mean 0.7 msec), they reached their maximal amplitude (4.0 mV) after 2.0–2.5 msec, and lasted about 10 msec. The EPSPs underwent only weak potentiation through the different types of stimulation of the gigantocellular nucleus and were not transformed into action potentials.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 62–66, January–February, 1980.  相似文献   

4.
Two types of evoked potentials are recorded in the tectum mesencephali in response to electrical stimulation of the forebrain surface of the turtleEmys orbicularis. The results of a layer-by-layer analysis show that evoked potentials of type I in response to stimulation of the hippocampal and piriform cortex are generated outside the tectum. Evoked potentials of type II, consisting of two surface-negative components, are recorded in the tectum in response to stimulation of the rostro-central surface of the forebrain. The first component appeared after a latent period of 20 msec and lasted 40–60 msec; the second component appeared after 80–100 msec and lasted 100–300 msec. Layer-by-layer and pharmacological analysis showed that the first component of the type II evoked potential is generated in the tegmental structures of the mesencephalon, whereas the second (long-latency) is generated in the tectum. The tectal origin of the second component is confirmed by its interaction with the tectal response to photic stimulation or to electrical stimulation of the optic nerve, evidence that these evoked potentials are generated by common structures. The efferent pathway from the dorsal cortex to the primary visual center is unilateral and has features of polysynaptic projections (long latent period, low lability).  相似文献   

5.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

6.
电刺激猫大脑皮层前外侧回联合区(ALA)对隐神经C类纤维传入引起的体感皮层(SI)诱发电位(C-CEP)有明显的抑制作用;侧脑室注射γ-氨基丁酸(GABA)能使C-CEP的幅值显著变小,潜伏期延长,表明GABA对C-CEP也有抑制作用;侧脑室注射GABA受体拮抗剂荷包牡丹硷后,电刺激ALA对C-CEP的抑制作用明显减弱,提示内源性GABA的释放可能参与大脑皮层联合区对C-CEP的调制过程。  相似文献   

7.
Field potentials evoked in the graunular layer of the cerebellar paramedian lobule of unanesthetized cats in response to stimulation of the sensomotor cortex and limb nerves contained slow negative waves, appearing after a long latent period, which were generated by granule cells. In the case of nerve stimulation this component was recorded both inside and outside the projection zone of the corresponding limb. Cortical stimulation by single stimuli or series of stimuli not more than 1.8–2.5 times above threshold strength led to the appearance of evoked potentials only inside the corresponding projection zone. The long-latency component of field potentials evoked by cerebral stimulation followed high frequencies of repetitive stimulation and was less sensitive to the action of barbital anesthesia than the analogous component of potentials evoked by nerve stimulation. In the case of combined cerebral and nerve stimulation the long-latency components underwent summation. It is concluded that mossy fibers of slowly-conducting spino- and cerebrocerebellar tracts innervate different granule cells in the cerebellar cortex.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 379–385, July–August, 1982.  相似文献   

8.
Projections of the mesenteric and pelvic nerves in the nuclei of Goll and Burdach were studied by the evoked potentials method in cats anesthetized with chloralose and immobilized with listhenon. Stimulation of visceral nerves is accompanied by the development of biphasic potentials with an initial positive wave. Potentials were recorded in all parts of the nuclei studied. The latent periods of responses to stimulation of the mesenteric nerves varied from 13 to 22 msec, and to stimulation of the pelvic nerves from 8 to 21 msec. Potentials appeared later in the nucleus of Burdach in response to stimulation of the same nerves. The amplitudes of the responses depended on the location of the recording electrode. The features of organization of projections of these visceral nerves suggest the existence of special nuclear formations for projections of visceral nerves in the medulla similar to the para-alar nucleus for the pelvic nerves.  相似文献   

9.
In acute experiments in rabbits immobilized by d-tubocurarine, stimulation of the entorhinal area with rectangular electric impulses led to the appearance of evoked potentials (EP) with a latent period of 6–12 msec in the occipital, temporal, parietal, and cingular areas of the neocortex. The amplitude of the positive response component was 500 µV, and its duration 25–50 msec. The negative component was not always discernible. When rhythmic stimulation was used, these EPs followed stimulation frequencies not exceeding 20 per sec. Stimulation of the medial parts of the entorhinal area with a frequency of one to three per sec was accompanied by recruitment of the EP in the occipital and temporal neocortex areas. Nembutal depressed the amplitude of the neocortex EP appearing in response to stimulation of the entorhinal cortex. With the aid of double stimulation it could be established that, after conditioning stimulation of the entorhinal area, the positive component of the primary response (PR) evoked by stimulation of the contralateral sciatic nerve in the projection zone of the somatosensory cortex is strengthened during the first 50 msec, and subsequently after 80–120 msec. In these cases, the negative component was depressed. These findings are discussed with a view to the influence of limbic structures on the neocortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 73–78, January–February, 1970.  相似文献   

10.
Recovery curves of evoked potentials in the association and visual cortex during paired stimulation of the pulvinar in chronic experiments on alert cats were shown to be similar in character. Depression of the test response was observed only if the interval between stimuli was of the order of 10 msec, but if it was 40 msec considerable (2–4 times) facilitation of the second response was observed, mainly on account of an increase in the negative component N1. Facilitation was less marked if the intervals were from 60 to 100 msec, and they decreased gradually to an interval of 200 msec. The recovery curve of cortical evoked potentials during paired stimulation of the lateral geniculate body differed considerably from the recovery curve during paired stimulation of the pulvinar and was characterized by a gradual increase in amplitude of the second response — from its almost total suppression with an interval of 10 msec to slight facilitation with an interval of 200 msec. If intervals of 10 to 80 msec were used, the test response was restored more slowly in the association cortex than in the visual cortex. The results are discussed from the standpoint of differences in the character of intracortical spread of excitation as a result of activation of geniculo-cortical and pulvinar-cortical pathways of conduction of information.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 497–505, July–August, 1984.  相似文献   

11.
Unit responses in the anterior sigmoid gyrus of cats anesthetized with chloralose (70 mg/kg) to vestibular nerve stimulation and their interaction with responses to acoustic and facial nerve stimulation were investigated. The focus of maximal activity of the vestibular projection was shown to lie a little rostrally to the anterior suprasylvian sulcus. The modality specificity of this part of the cortex to vestibular impulses is reflected in the shortest values of latent periods and the distinct phasic character of the responses, and also in the numerical preponderance of neurons with short-latency responses. Although considerable topographic overlapping of the vestibular projection by acoustic and somatosensory (facial zone) projections is found, the vestibular afferent input predominates over the other afferent inputs.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 353–358, July–August, 1981.  相似文献   

12.
In acute experiments on cats anesthetized with pentobarbital and chloralose, focal responses were recorded to study projections of various parts of the orbitofrontal cortex and cortex of the temporal pole in the region of the medial dorsal nucleus of the thalamus and interaction in this nucleus between stimuli arriving from the medio-basal portions of the neocortex. Different parts of the orbitofrontal cortex were found to have local projections in the medial dorsal nucleus so arranged that the rostral zones of the cortex send stimuli to the medio-dorsal portions of the nucleus, whereas regions of the cortex radiating fanwise from the pole in dorsal and caudal directions are arranged in the lateral and basal portions of the nucleus. The cortex of the temporal pole has relatively diffuse projections in the medial part of the medial dorsal nucleus. Stimuli reaching the medial dorsal nucleus from the basal structures of the neocortex (temporal pole) were shown to facilitate response to stimulation of the orbitofrontal cortex. Meanwhile, stimulation of this region of the cortex depresses the receptive capacity of the nucleus for impulses arriving from the temporal cortex.  相似文献   

13.
We recorded middle-latency (20–70 msec) auditory evoked potentials (MLAEPs) to monaural and binaural clicks in 30 normal adults (ages 20–49 years) at 32 scalp locations all referred to a balanced non-cephalic reference. Our goal was to define the MLAEP components that were present at comparable latencies and comparable locations across the subject population. Group and individual data were evaluated both as topographic maps and as MLAEPs at selected electrode locations.Three major components occurred between 20 and 70 msec, two well-known peaks centered at the vertex, and one previously undefined peak focused over the posterior temporal area. Pa is a 29 msec positive peak centered at the vertex and present with both monaural and binaural stimulation, Pb is a 53 msec positive peak also centered at the vertex but seen consistently only with binaural and right ear stimulation. TP41 is a 41 msec positive peak focused over both temporal areas. TP41 has not been identified in previous MLAEP studies that concentrated on central scalp locations and/or used active reference electrode sites such as ears or mastoids.Available topographic, intracranial, pharmacologic, and lesion studies indicate that Pa, Pb and TP41 are of neural origin. Whether Pa and/or Pb are produced in Heschl's gyrus, primary auditory cortex, remains unclear. TP41 is probably produced by auditory cortex on the posterior lateral surface of the temporal lobe. It should prove of considerable value in experimental and clinical evaluation of higher level auditory function in particular and of cortical function in general.  相似文献   

14.
The dynamics of habituation in the rostral part of the parietal association region and also in the first and second somatosensory areas was studied by the evoked potentials (EP) method in cats anesthetized with chloralose (80-90 mg/kg) and immobilized with flaxedil. During repeated stimulation of the splanchnic nerve brief habituation of EP developed in the cortex. It corresponded in its basic features to habituation observed in other sensory systems. On comparison of the rates of development of habituation in the primary and secondary projection zones of the splanchnic nerve in the cortex differences were found: habituation developed more rapidly in the secondary projection zones. The functional importance of this phenomenon is discussed.  相似文献   

15.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

16.
Postsynaptic potentials evoked in accessory nerve motoneurons by stimulation of the ipsilateral and contralateral red nuclei were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Polysynaptic EPSPs with latent periods of 5.2 to 16 (mean 9.1 ± 0.7) msec and from 5.5 to 18 (mean 10.3 ± 0.9) msec, respectively, appeared in motoneurons of the accessory nerve in response to stimulation of the contralateral and ipsilateral red nuclei. A minimum of two or three stimuli was necessary to produce EPSPs in these motoneurons. In response to single stimulation of the contralateral and ipsilateral red nuclei EPSPs appeared in four motoneurons of the trapezius muscle with latent periods of 2.5 to 5.0 and 3.0 to 5.2 msec, respectively. An increase in the number of stimuli led to action potential generation by motoneurons. The functional role of such activation is discussed.A. A. Bogomolets Institue of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 532–536, September–October, 1982.  相似文献   

17.
Wave VI (8.4 msec) of the brain-stem auditory evoked potential (BAEP) was maximal in a discrete region of primary auditory cortex (AI) of the anesthetized cat. Wave VI underwent rapid amplitude decreas over millimeter distances in the AI region and followed high stimulation rates. Wave VI did not show intracortical polarity inversion nor was it abolished by epicortical or intracortical GABA administration. The data are compatible with a wave VI source in the terminal axons of the thalamo-cortical radiations.Middle latency auditory responses (MAEPs) generated 10–40 msec after auditory stimulation were also recorded in a circumscribed area of AI. In contrast to wave VI, these primary auditory cortex potentials (Pa 18.3 msec; Nb 31.9 msec) underwent transcortical polarity inversion, correlated with intracortical multi-unit activity in the AI region and were reversibly altered or abolished by epicortical or intracortical GABA adminstration to the AI region. The data suggest that the Pa and Nb components of the cat MAEP are intracortically generated by neuronal elements in the AI region.  相似文献   

18.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

19.
Postsynaptic potentials (PSPs) of 83 neurons in the motor cortex of unanesthetized cats in response to electrodermal, photic, and acoustic stimulation were investigated by intra-and quasi-intracellular recording methods. Most cells responded to stimulation of at least one limb. About 60% of neurons of the posterior and over 75% of neurons of the anterior sigmoid gyrus responded to stimulation of two (or more) limbs. In 29 of 39 neurons of the anterior and 12 of 44 of the posterior sigmoid gyrus PSPs with a short (less than 50 msec) and stable latent period were evoked by flashes and clicks. On presentation of two somesthetic stimuli complete blocking (if the interval was less than 30–60 msec) or weakening (interval 30–200 msec) of responses to the second (testing) stimulus was observed. On presentation of paired photic (or acoustic) stimuli or paired stimuli of different modalities at various intervals from 0 to 100 msec, the testing response was often potentiated. The character of the responses and their interaction thus differed from those obtained under chloralose anesthesia [6, 7]. It is postulated that under the action of chloralose a system of neurons with strong excitatory feedback is formed in the motor cortex which may respond to stimuli of different modalities by something resembling the "all or nothing" principle.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 563–573, November–December, 1971.  相似文献   

20.

Background

A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices.

Methods

Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy.

Results

Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position.

Conclusions

Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号