首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cis-epoxysuccinate hydrolases (CESHs), members of epoxide hydrolase, catalyze cis-epoxysuccinic acid hydrolysis to form d(?)-tartaric acid or l(+)-tartaric acid which are important chemicals with broad scientific and industrial applications. Two types of CESHs (CESH[d] and CESH[l], producing d(?)- and l(+)-tartaric acids, respectively) have been reported with low yield and complicated purification procedure in previous studies. In this paper, the two CESHs were overexpressed in Escherichia coli using codon-optimized genes. High protein yields by one-step purifications were obtained for both recombinant enzymes. The optimal pH and temperature were measured for both recombinant CESHs, and the properties of recombinant enzymes were similar to native enzymes. Kinetics parameters measured by Lineweaver?CBurk plot indicates both enzymes exhibited similar affinity to cis-epoxysuccinic acid, but CESH[l] showed much higher catalytic efficiency than CESH[d], suggesting that the two CESHs have different catalytic mechanisms. The structures of both CESHs constructed by homology modeling indicated that CESH[l] and CESH[d] have different structural folds and potential active site residues. CESH[l] adopted a typical ??/??-hydrolase fold with a cap domain and a core domain, whereas CESH[d] possessed a unique TIM barrel fold composed of 8 ??-helices and 8 ??-strands, and 2 extra short ??-helices exist on the top and bottom of the barrel, respectively. A divalent metal ion, preferred to be zinc, was found in CESH[d], and the ion was proved to be crucial to the enzymatic activity. These results provide structural insight into the different catalytic mechanisms of the two CESHs.  相似文献   

2.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

3.
4.
d-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L?1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L?1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L?1 and yield of 62.0 %. Batch fermentation in 20 g L?1 d-galactose of E. coli ?galK?dgoK mutant expressing the gld resulted in 17.6 g L?1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.  相似文献   

5.
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from d-xylose is reported. This route consists of four steps: d-xylose?→?d-xylonate?→?2-dehydro-3-deoxy-d-pentonate?→?glycoaldehyde?→?EG. Respective enzymes, d-xylose dehydrogenase, d-xylonate dehydratase, 2-dehydro-3-deoxy-d-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the d-xylose?→?d-xylulose reaction was prevented by disrupting the d-xylose isomerase gene. The most efficient construct produced 11.7 g?L?1 of EG from 40.0 g?L?1 of d-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde?→?glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to d-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.  相似文献   

6.
The effects of sodium, potassium, sugar inhibitors, and membrane potential on 3H-d-glucose uptake by hepatopancreatic epithelial brush border membrane vesicles (BBMV) of the Atlantic marine shrimp, Litopenaeus setiferus, were investigated. Brush border membrane vesicles were prepared using a MgCl2/EGTA precipitation method and uptake experiments were conducted using a high speed filtration technique. 3H-d-Glucose uptake was stimulated by both sodium and potassium and these transport rates were almost doubled in the presence of an inside-negative-induced membrane potential. Kinetics of 3H-d-glucose influx were hyperbolic functions of both external Na+ or K+, and an induced membrane potential increased influx J max and lowered Km in both salts. 3H-d-Glucose influx versus [glucose] in both Na+ or K+ media also displayed Michaelis–Menten properties that were only slightly affected by induced membrane potential. Phloridzin was a poor inhibitor of 0.5 mM 3H-d-glucose influx, requiring at least 5 mM in NaCl and 10 mM in KCl to significantly reduce hexose transport. Several sugars (d-galactose, α-methyl-d-gluco-pyranoside, unlabeled d-glucose, d-fructose, and d-mannose) were used at 75 mM as potential inhibitors of 0.1 mM 3H-d-glucose influx. Only unlabeled d-glucose, d-fructose, and d-mannose significantly (p < 0.05) reduced labeled glucose transport. An additional experiment using increasing concentrations of d-mannose (0, 10, 25, 75, and 100 mM) showed this hexose to be an effective inhibitor of 0.1 mM 3H-d-glucose uptake at concentrations of 75 mM and higher. As a whole these results suggest that 3H-d-glucose transport by hepatopancreatic BBMV occurs by a carrier system that is able to use both Na+ and K+ as drivers, is enhanced by membrane potential, is relatively refractory to phloridzin, and is only inhibited by itself, d-fructose, and d-mannose. These properties are similar to those exhibited by the mammalian SLC5A9/SGLT4 transporter, suggesting that an invertebrate analogue of this protein may occur in shrimp.  相似文献   

7.
For elucidation of the regulation mechanisms of intrinsic amounts of d-serine (d-Ser) which modulates the neuro-transmission of N-methyl-d-aspartate receptors in the brain, mutant animals lacking serine racemase (SRR) and d-amino acid oxidase (DAO) were established, and the amounts of d-Ser in the tissues and physiological fluids were determined. d-Ser amounts in the frontal brain areas were drastically decreased followed by reduced SRR activity. On the other hand, a moderate but significant decrease in d-Ser amounts was observed in the cerebellum and spinal cord of SRR knock-out (SRR?/?) mice compared with those of control mice, although the amounts of d-Ser in these tissues were low. The amounts of d-Ser in the brain and serum were not altered with aging. To clarify the uptake of exogenous d-Ser into the brain tissues, we have determined the d-Ser of SRR?/? mice after oral administration of d-Ser for the first time, and a drastic increase in d-Ser amounts in all the tested tissues was observed. Because both DAO and SRR are present in some brain areas, we have established the double mutant mice lacking SRR and DAO for the first time, and the contribution of both enzymes to the intrinsic d-Ser amounts was investigated. In the frontal brain, most of the intrinsic d-Ser was biosynthesized by SRR. On the other hand, half of the d-Ser present in the hindbrain was derived from the biosynthesis by SRR. These results indicate that the regulation of intrinsic d-Ser amounts is different depending on the tissues and provide useful information for the development of treatments for neuronal diseases.  相似文献   

8.
This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring d-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were d-amino acid oxidase for d-serine sensitivity (linear region slope, 61?±?7?μA?cm–2?mM–1; limit of detection, 20?nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1?s, ideal for ‘real-time’ monitoring, and detection of systemically administered d-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of d-serine in excitotoxicity, and modulation of N-methyl-d-aspartate receptor function by d-serine and glycine in the central nervous system.  相似文献   

9.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

10.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

11.
Basically the peptidoglycan of Myxobater AL-1 consists of alternating β-1,4-linked N-acetylglucosamic-N-acetylmuramic acid chains. After splitting the aminosugar backbone with a specific algal enzyme three subunits arise: a monomer, a dimer and a trimer. Investigation of the monomer with specific enzymes and comparison of the degradation products to standards derived from other bacterial peptidoglycans suggest the following structure of the monomer peptide: l-alanyl-d-glutamic-l-meso-diaminopimelic-d-alanine. A d-alanyl-d-meso-diaminopimelic acid bond is the bridgebond between the peptides of the subunits.  相似文献   

12.
The reaction of potassium tetrachloroplatinate(II) with six representative sulfurcontaining amino acids, namely,d- andl-cysteine,d- andl-methionine and its methyl ester hydrochloride gives the corresponding enantiomerically purecis-dichloroplatinum(II) complexes. This represents the first reported series of well-characterized enantiomerically pure platinum(II) complexes for bothd- andl-amino acids. The spectroscopic properties, including IR,1H-NMR, and13C NMR, of these complexes and their configuration are discussed.  相似文献   

13.
3-O-β-d-Xylopyranosyl-l-serine (xylosylserine) was synthesized by the following three-step procedure: 1) 2,3,4-tri-O-benzoyl-α-d-xylopyranosyl bromide (benzobromoxylose) was condensed withN-carbobenzoxy-l-serine benzyl ester using the silver triflate-collidine complex as promoter; 2) theN-carbobenzoxy and benzyl ester groups in the resultant glycoside were cleaved by transfer hydrogenation with palladium black as catalyst and ammonium formate as hydrogen donor; and 3) the benzoyl groups were removed with methanolic ammonia. Xylosylserine was obtained in an overall yield of 70%. O-β-d-Galactopyranosyl-(1-4)-O-β-d-xylopyranosyl-(1-3)-l-serine (galactosylxylosylserine) was also synthesized by this methodology and was characterized by 2-dimensional (2D) NMR spectroscopy techniques. The two serine glycosides (xylosylserine and galactosylxylosylserine) were used in detection and partial purification of galactosyltransferase I (UDP-d-galactose:d-xylose galactosyltransferase) from adult rat liver.  相似文献   

14.
Free d-aspartate (d-Asp) occurs in substantial amounts in glandular tissues. This paper reviews the existing work on d-Asp in vertebrate exocrine and endocrine glands, with emphasis on functional roles. Endogenous d-Asp was detected in salivary glands. High d-Asp levels in the parotid gland during development suggest an involvement of the amino acid in the regulation of early developmental phases and/or differentiation processes. d-Asp has a prominent role in the Harderian gland, where it elicits exocrine secretion through activation of the ERK1/2 pathway. Interestingly, the increase in NOS activity associated with d-Asp administration in the Harderian gland suggests a potential capability of d-Asp to induce vasodilatation. In mammals, an increase in local concentrations of d-Asp facilitates the secretion of anterior pituitary hormones, i.e., PRL, LH and GH, whereas it inhibits the secretion of POMC/α-MSH from the intermediate pituitary and of oxytocin from the posterior pituitary. d-Asp also acts as a negative regulator for melatonin synthesis in the pineal gland. Further, d-Asp can stereo-specifically modulate the production of sex steroids, thus taking part in the endocrine control of reproductive activity. Although d-Asp receptors remain to be characterized, gene expression of NR1 and NR2 subunits of NMDAr responds to d-Asp in the testis.  相似文献   

15.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

16.
Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly l-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-l and d-lactic acid and has a higher melting temperature. To date, several studies have explored the production of l-lactic acid, but information on biosynthesis of d-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of d-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to d-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L?1 of d-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g?1 and 1.01 g L?1 h?1, respectively. Luedeking–Piret model described the mixed growth-associated production of d-lactic acid with a maximum specific growth rate 0.2 h?1 and product formation rate 0.026 h?1, obtained for this strain. The efficient synthesis of d-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.  相似文献   

17.
It has long been believed that amino acids comprising proteins of all living organisms are only of the l-configuration, except for Gly. However, peptidyl d-amino acids were observed in hydrolysates of soluble high molecular weight fractions extracted from cells or tissues of various organisms. This strongly suggests that significant amounts of d-amino acids are naturally present in usual proteins. Thus we analyzed the d-amino acid contents of His-tag-purified β-galactosidase and human urocortin, which were synthesized by Escherichia coli grown in controlled synthetic media. After acidic hydrolysis for various times at 110°C, samples were derivatized with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F) and separated on a reverse-phase column followed by a chiral column into d- and l-enantiomers. The contents of d-enantiomers of Ala, Leu, Phe, Val, Asp, and Glu were determined by plotting index d/(d + l) against the incubation time for hydrolysis and extrapolating the linear regression line to 0 h to eliminate the effect of racemization of amino acids during the incubation. Significant contents of d-amino acids were reproducibly detected, the d-amino acid profile being specific to an individual protein. This finding indicated the likelihood that d-amino acids are in fact present in the purified proteins. On the other hand, the d-amino acid contents of proteins were hardly influenced by the addition of d- or l-amino acids to the cultivation medium, whereas intracellular free d-amino acids sensitively varied according to the extracellular conditions. The origin of these d-amino acids detected in proteins was discussed.  相似文献   

18.
Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.  相似文献   

19.
20.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号