首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coenzyme and substrate interactions with mannitol-1-phosphate dehydrogenase fromEscherichia coli (a dimer of MW 45,000) have been studied by fluorescence spectroscopy. NAD+ quenches the fluorescence emission of the protein tryptophan residues; shifting the excitation wavelength from 280 to 290 nm results in an increase in this quenching and a red shift in the emission maximum. NAD+ also quenches the fluorescence of covalently attached pyridoxyl phosphate, and this quenching is accompanied by a spectral broadening above 425 nm. Fructose-6-phosphate increases the binding of NAD+, but causes a slight reduction in the quenching of the tryptophan fluorescence observed at saturating levels of coenzyme, and reverses the NAD+-induced broadening in the pyridoxyl phosphate emission spectrum. NADH quenches the protein emission much less than NAD+; this quenching is not changed by shifting the excitation wavelength and is not affected by the presence of bound mannitol-1-phosphate. Titrations monitoring the quenching by NADH indicate a single class of NADH binding sites, while titrations monitoring NADH fluorescence suggest that coenzyme fluorescence is more enhanced when NADH is bound to less than half of the total enzyme subunits, with the emission per NADH molecule bound decreasing as the number of NADH molecules bound increases. In the absence of coenzyme, neither fructose-6-phosphate nor mannitol-1-phosphate have any effect on the protein tryptophan emission; however, both substrates induce specific changes in the emission spectrum of covalently attached pyridoxyl phosphate. These results suggest that the different coenzymes and substrates cause specific conformational changes in mannitol-1-phosphate dehydrogenase.  相似文献   

2.
J Ovádi  I R Osman  J Batke 《Biochemistry》1982,21(25):6375-6382
Covalent binding of FITC up to 2 mol/mol of tetrameric enzyme does not affect the enzymatic activity and dissociation properties of pig muscle D-glyceraldehyde-3-phosphate dehydrogenase (GAPD). The binding of NAD to dehydrogenase-FITC complex partially reverts the quenching caused by the binding of dye to apo-GAPD. This phenomenon, as well as the formation of a characteristic absorption difference spectrum caused by the binding of NAD, makes it possible to follow the NAD-induced local conformational changes near the dye-binding region. The time course of NAD-induced spectral changes shows biphasic kinetics: a burst and a slow phase. The amplitude of burst phase as a function of NAD equivalents has sigmoidal shape due to the cooperative interaction between subunits. The same conclusion could be drawn from fluorescence anisotropy measurements. In the presence of excess NAD a slow conformational change can be detected, the amplitude of which is a function of NAD concentration. This phenomenon can be attributed to the binding of further NAD molecules to the holoenzyme. The slow phase follows first-order kinetics, and the rate constant depends on enzyme concentration. The specific fluorescence intensity and the fluorescence anisotropy of fluorescent dye labeled apo-GAPD and GAPD saturated with NAD are also dependent on enzyme concentration. We suggest that NAD binding induces major changes in the steric structure of tetrameric enzyme without influencing remarkably the interacting forces between the contact surfaces of subunits. Data are quantitatively interpreted in terms of a two-step dissociation model.  相似文献   

3.
The intensity and wavelength-dependence of Rose-Bengal-mediated photoinhibition of red blood cell acetylcholinesterase has been studied. Irradiation of dye-membrane suspensions with 308 nm laser excitation resulted in enzyme inhibition almost 50% greater than that obtained with 514 nm laser excitation. Sodium azide and argon purging greatly decreased the photosensitized enzyme inhibition at both wavelengths. Although Rose Bengal photosensitized enzyme inhibition more efficiently upon excitation into Sn (308 nm) than into S1 (514 nm), Stern-Volmer analysis of sodium azide quenching data gave similar quenching efficiencies at both wavelengths. Irradiation of dye-membrane suspensions with increasing intensities (Nd:YAG, 532 nm, 40 ps pulse duration) resulted in a decrease in enzyme inhibition. Saturation of the Rose Bengal fluorescence intensity and light transmission occurred with nearly the same intensity-dependence, suggesting that ground-state depletion occurs at the higher intensities. Our results demonstrate that excitation of a sensitizer into higher-lying excited singlet states can result in enhanced sensitizing efficiency. However, attempts to populate such states in Rose Bengal by sequential two-photon absorption using high intensities resulted only in ground-state depletion.  相似文献   

4.
Enzymatic properties, renaturation and metabolic role of mannitol-1-phosphate dehydrogenase from Escherichia coli. D-mannitol-1-phosphate dehydrogenase was purified to homogeneity from Escherichia coli, and its physicochemical and enzymatic properties were investigated. The molecular weight of the polypeptide chain is 45,000 as determined by polyacrylamide gel electrophoresis in denaturing conditions. High performance size exclusion chromatography gives an apparent molecular weight of 47,000 for the native enzyme, showing that D-mannitol-1-phosphate dehydrogenase is a monomeric NAD-dependent dehydrogenase. D-mannitol-1-phosphate dehydrogenase is rapidly denatured by 6 M guanidine hydrochloride. Non-superimposable transition curves for the loss of activity and the changes in fluorescence suggest the existence of a partially folded inactive intermediate. The protein can be fully renatured after complete unfolding, and the regain of both native fluorescence and activity occurs rapidly within a few seconds at pH 7.5 and 20 degrees C. Such a high rate of reactivation is unusual for a protein of this size. D-mannitol-1-phosphate dehydrogenase is specific for mannitol-1-phosphate (or fructose-6-phosphate) as a substrate and NAD+ (or NADH) as a cofactor. Zinc is not required for the activity. The affinity of D-mannitol-1-phosphate dehydrogenase for the reduced or oxidized form of its substrate or cofactor remains constant with pH. The affinity for NADH is 20-fold higher than for NAD+. The forward and reverse catalytic rate constants of the reaction: mannitol-1-phosphate + NAD+ in equilibrium fructose-6-phosphate + NADH have different pH dependences. The oxidation of mannitol-1-phosphate has an optimum pH of 9.5, while the reduction of fructose-6-phosphate has its maximum rate at pH 7.0. At pH values around neutrality the maximum rate of reduction of fructose-6-phosphate is much higher than that of oxidation of mannitol-1-phosphate. The enzymatic properties of isolated D-mannitol-1-phosphate dehydrogenase are discussed in relation to the role of this enzyme in the intracellular metabolism.  相似文献   

5.
Enzyme IIIMtl is part of the mannitol phosphotransferase system of Enterococcus faecalis. It is phosphorylated in a reaction sequence requiring enzyme I and heat-stable phosphocarrier protein (HPr). The phospho group is transferred from enzyme IIIMtl to enzyme IIMtl, which then catalyzes the uptake and concomitant phosphorylation of mannitol. The internalized mannitol-1-phosphate is oxidized to fructose-6-phosphate by mannitol-1-phosphate dehydrogenase. In this report we describe the cloning of the mtlF and mtlD genes, encoding enzyme IIIMtl and mannitol-1-phosphate dehydrogenase of E. faecalis, by a complementation system designed for cloning of gram-positive phosphotransferase system genes. The complete nucleotide sequences of mtlF, mtlD, and flanking regions were determined. From the gene sequences, the primary translation products are deduced to consist of 145 amino acids (enzyme IIIMtl) and 374 amino acids (mannitol-1-phosphate dehydrogenase). Amino acid sequence comparison confirmed a 41% similarity of E. faecalis enzyme IIIMtl to the hydrophilic enzyme IIIMtl-like portion of enzyme IIMtl of Escherichia coli and 45% similarity to enzyme IIIMtl of Staphylococcus carnosus. The putative N-terminal NAD+ binding domain of mannitol-1-phosphate dehydrogenase of E. faecalis shows a high degree of similarity with the N terminus of E. coli mannitol-1-phosphate dehydrogenase (T. Davis, M. Yamada, M. Elgort, and M. H. Saier, Jr., Mol. Microbiol. 2:405-412, 1988) and the N-terminal part of the translation product of S. carnosus mtlD, which was also determined in this study. There is 40% similarity between the dehydrogenases of E. faecalis and E. coli over the whole length of the enzymes. The organization of mannitol-specific genes in E. faecalis seems to be similar to the organization in S. carnosus. The open reading frame for enzyme IIIMtl E. faecalis is followed by a stem-loop structure, analogous to a typical Rho-independent terminator. We conclude that the mannitol-specific genes are organized in an operon and that the gene order is mtlA orfX mtlF mtlD.  相似文献   

6.
CTP:glycerol-3-phosphate cytidylyltransferase (GCT) catalyzes the synthesis of CDP-glycerol for teichoic acid biosynthesis in certain Gram-positive bacteria. This enzyme is a model for a cytidylyltransferase family that includes the enzymes that synthesize CDP-choline and CDP-ethanolamine for phosphatidylcholine and phosphatidylethanolamine biosynthesis. We have used quenching of intrinsic tryptophan fluorescence to measure binding affinities of substrates to the GCT from Bacillus subtilis. Binding of either CTP or glycerol-3-phosphate to GCT was biphasic, with two binding constants of about 0.1-0.3 and 20-40 microm for each substrate. The stoichiometry of binding was 2 molecules of substrate/enzyme dimer, so the two binding constants represented distinctly different affinities of the enzyme for the first and second molecule of each substrate. The biphasic nature of binding was observed with the wild-type GCT as well as with several mutants with altered Km or kcat values. This negative cooperativity of binding was also seen when a catalytically defective mutant was saturated with two molecules of CTP and then titrated with glycerol-3-phosphate. Despite the pronounced negative cooperativity of substrate binding, negative cooperativity of enzyme activity was not observed. These data support a mechanism in which catalysis occurs only when the enzyme is fully loaded with 2 molecules of each substrate/enzyme dimer.  相似文献   

7.
The fluorescence decay mechanism of 1, N6-ethenoadenosine diphosphoribose bound to rabbit muscle glyceraldehyde 3-phosphate dehydrogenase markedly differs from that of the intact coenzyme analog (εNAD+) bound to the same enzyme. In the latter case the fluorescence is partially quenched by interactions between the ethenoadenine ring and amino acid residues in its binding site. Binding of the nicotinamide moiety of the coenzyme thus affects the relative orientation of the adenine ring within its binding site leading to the quenching interactions. The interactions of the adenine group with its binding site induce conformational changes in the enzyme which affect the binding of additional coenzyme molecules. The nicotinamide base thus determines, indirectly, the negative cooperativity found in NAD+ binding.  相似文献   

8.
The levels of phosphofructokinase (EC 2.7.1.11) and mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) have been determined in a number of Mucor and Penicillium species. Mannitol-1-phosphate dehydrogenase was found in only one species of mucor, Mucor rouxii, and this with a specific activity much lower than that found in Penicillium species. All of the fungi tested in the Ascomycetes class exhibited mannitol-1-phosphate dehydrogenase activity. Interference from both mannitol-1-phosphate dehydrogenase and NADH oxidase (EC 1.6.99.5) caused some difficulty initially in detecting phosphofructokinase in Penicillium species; the Penicillium phosphofructokinase is very unstable. Penicillium notatum accumulates mannitol intracellularly; detection of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase (EC 3.1.3.22) activity in cell-free extracts indicates that the mannitol is formed from glucose via fructose-6-phosphate and mannitol-1-phosphate; no direct reduction of fructose to mannitol could be detected. The mannitol-1-phosphate dehydrogenase was specific for mannitol-1-phosphate and fructose-6-phosphate; NADP+(H) could not replace NAD+(H). The phosphatase (EC3.1.3.22) exhibited a distinct preference for mannitol-1-phosphate as substrate; all other substrates tested exhibited less than 25% of the activity observed with mannitol-1-phosphate.  相似文献   

9.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure.  相似文献   

10.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

11.
Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5,10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. TheK i values obtained by kinetic methods and theK d value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0.9–1.2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.  相似文献   

12.
DPPC:DPPE-proteoliposomes (in which the enzyme is inside-out oriented) and DLOPC:DLOPE-proteoliposomes (in which the enzyme is only 40% inside-out oriented) is an excellent model for studying the selective effect of the reactive oxygen species, produced by the photo-activation of Rose Bengal. Both proteoliposomes used, when submitted to photo-irradiation with laser using 1200 mJ/cm2 energy dose, in the absence of the Rose Bengal, did not shown any effect in the ATPase activity and in the integrity of its systems. Also, no effect was observed using 50 μM of Rose Bengal encapsulated in the interior of the DPPC:DPPE-proteoliposome system. But, when we use 50 μM of Rose Bengal, present only in the extravesicular environment, and photo-irradiation with a laser dose of 200 mJ/cm2, it results in the loss of 40-50% of the ATPase activity, with damage of the DPPC:DPPE-proteoliposome integrity. Using a dose of 400 mJ/cm2 the ATPase activity was totality lost. Consequently, these effects could be correlated with direct damage in the peptide structure. The photo-irradiation of the system constituted by DLOPC:DLOPE-proteoliposome in the presence of Rose Bengal, encapsulated only in the interior compartment or in the extra-liposomal environments, revealed a gradual decrease of the ATPase activity, maintaining it at 30% after a dose of 1200 mJ/cm2 and losing total ATPase activity at 800 mJ/cm2, respectively, with the loss of integrity of this vesicular system in both conditions studied. The generated singlet oxygen could attack the double linkage present in the fatty acid structure of the lipid instead of the amino acid in the protein structure and, in a second step, result in an indirect inactivation of the enzyme activity. In summary, these results indicated that singlet oxygen species produced by photo-oxidation of Rose Bengal using laser light could act in protein and lipid structure depending on its proportion or distribution.  相似文献   

13.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

14.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

15.
The time-course of ATP hydrolysis by Ca-ATPase of purified sarcoplasmic reticulum is biphasic with an initial rate over 1 to 2 min exceeding the subsequent rate. Hydrolysis of GTP and p-nitrophenylphosphate (pNPP) occurs at a slower but constant rate. Arrhenius plots of GTP, p-nitrophenylphosphate and initial rates of ATP hydrolysis all exhibit a discontinuity at about 20-24 degrees C; no breaks are observed in plots of the slower phase of ATP hydrolysis. The effect of substrate hydrolysis on the disposition of the enzyme in the membrane was examined by monitoring the quenching of tryptophan fluorescence by pyrene present in the hydrophobic domain of the membrane. The presence of ATP, but not GTP, prevents a temperature-dependent decrease in fluorescence quenching suggesting that ATP binding causes a change in the protein domain in contact with the membrane lipids.  相似文献   

16.
Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that catalyses conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. ATP has been found to have an inhibitory effect on this enzyme. To establish the interaction between the enzyme and ATP, a fluorescence technique was used. Fluorescence quenching in the presence of ATP suggests cooperative binding of ATP to the enzyme (the Hill obtained coefficient equals 2.78). The interaction between glyceraldehyde-3-phosphate dehydrogenase and ATP may control not only glycolysis but other activities of this enzyme, such as binding to the cytoskeleton.  相似文献   

17.
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 microM. Kinetic analyses revealed that at a concentration below 0.5 microM the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (Ka) and stoichiometry (r) for the enzyme-dye complex.  相似文献   

18.
Several representatives of marine brown macroalgae (Phaeophyceae) including Fucus serratus L., Fucus spiralis L. and Fucus vesiculosus L. as well as Laminaria digitata (Huds.) Lamour., Laminaria hyperborea (Gunn.) Foslie and Laminaria saccharina (L.) Lamour. were investigated with particular regard to features of biosynthesis of the storage product mannitol. The respective catalytic system involved in the last step of mannitol formation, mannitol-1-phosphate dehydrogenase, appears to be a cytoplasmic enzyme as may be judged from the degree of correlation with the chloroplast key enzyme ribulose-1,5-bisphosphate carboxylase in different tissues of Laminaria digitata and Laminaria saccharina. Activity of mannitol-1-phosphate dehydrogenase in vitro is not affected by mannitol-l-phosphate or free mannitol, suggesting that mannitol biosynthesis in vivo) is mainly controlled by the environment and/or developmental stage. Certain inorganic ions such as NO3- (including K+) exert a strong influence on the activity of mannitol1-phosphate dehydrogenase thus suggesting that the intracellular pools of stored NO3- and mannitol are confined to spatially separated cellular compartments.  相似文献   

19.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

20.
The quenching of coenzyme fluorescence in glycogen phosphorylase b is reinvestigated. Data with anionic quenchers show deviations from the original Stern-Volmer kinetics. A kinetic analysis based on measured lifetime data indicates a collisional quenching process, which is, however, not diffusion-controlled. It is proposed, that the quenching takes place primarily by enzyme-bound quencher species. The observed inhibition of the enzyme reaction by I- and IO-3 is consistent with this hypothesis. The inhibition pattern and spectral investigation refer to a true competition with the substrate, glucose-1-phosphate. So, this dynamic quenching can be regarded as an indicator of rapid conformational fluctuations which bring the two important active-site groups in contact. Effect of ligand binding on the quenching of coenzyme fluorescence should also be revaluated according to these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号