首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of stimulation of the ipsilateral and contralateral red nuclei on motoneurons of the hypoglossal nucleus was studied in cats anesthetized with chloralose and pentobarbital. In 35 (69%) of the 51 motoneurons tested, PSPs were generated in response to stimulation of the red nuclei by series of 3 to 5 stimuli of threshold strength and with a frequency of 500–600/sec. Of this number, 33 motoneurons responded to stimulation by EPSPs, whose latent periods varied from 3.5 to 14.0 msec (mean value for the ipsilateral red nucleus 5.7±0.75, for the contralateral nucleus 6.8±0.8 msec), whereas two motoneurons responded (after 6.2 msec) by IPSPs. Of the 35 motoneurons responding to stimulation of the red nuclei, stimulation of the lingual nerve evoked EPSPs in 31 and IPSPs in 4 (two of them were inhibited by rubrofugal impulses). IPSPs were generated as a result of stimulation of the lingual nerve in 16 motoneurons which did not respond to rubrofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 62–66, January–February, 1978.  相似文献   

2.
Postsynaptic potentials evoked in accessory nerve motoneurons by stimulation of the ipsilateral and contralateral red nuclei were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Polysynaptic EPSPs with latent periods of 5.2 to 16 (mean 9.1 ± 0.7) msec and from 5.5 to 18 (mean 10.3 ± 0.9) msec, respectively, appeared in motoneurons of the accessory nerve in response to stimulation of the contralateral and ipsilateral red nuclei. A minimum of two or three stimuli was necessary to produce EPSPs in these motoneurons. In response to single stimulation of the contralateral and ipsilateral red nuclei EPSPs appeared in four motoneurons of the trapezius muscle with latent periods of 2.5 to 5.0 and 3.0 to 5.2 msec, respectively. An increase in the number of stimuli led to action potential generation by motoneurons. The functional role of such activation is discussed.A. A. Bogomolets Institue of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 532–536, September–October, 1982.  相似文献   

3.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

4.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

5.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

6.
Acute experiments on cats under chloralose-pentobarbital anesthesia showed that application of single stimuli to Deiters' nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nucleus. Latent periods of EPSPs ranged from 1.3 to 2.3 msec (mean 1.8±0.3 msec), their rise time was 0.5–1.0 msec, and their duration 7–10 msec. During repetitive stimulation the EPSPs were weakly potentiated, but with an increase in the strength of stimulation applied to Deiters' nucleus they readily changed into action potentials. In some motoneurons polysynaptic EPSPs with latent periods of the order of 6.0 msec appeared on the descending phase of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 515–519, September–October, 1981.  相似文献   

7.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

8.
Acute experiments on cats anesthetized with chloralose and pentobarbital showed that excitation of fast-conducting (130 m/sec) reticulospinal fibers, arising during stimulation of the ipsilateral medullary reticular gigantocellular nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nerve nucleus. The EPSPs had latent periods of between 0.6 and 1.0 msec (mean 0.7 msec), they reached their maximal amplitude (4.0 mV) after 2.0–2.5 msec, and lasted about 10 msec. The EPSPs underwent only weak potentiation through the different types of stimulation of the gigantocellular nucleus and were not transformed into action potentials.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 62–66, January–February, 1980.  相似文献   

9.
Synaptic responses of 121 identified cervical motoneurons to stimulation of the pyramidal tract and red nucleus were investigated by intracellular recording in cats. Responses of EPSP or EPSP-IPSP type were predominant in motoneurons of distal groups of muscles and proximal flexors, while responses of IPSP type were predominant in motoneurons of the proximal extensors. The minimal effective number of stimuli for most motoneurons was 2 or 3. The mean latent period, counted from the first stimulus in the series, was 7.86 msec for EPSPs for stimulation of the pyramidal tract and 7.91 msec for stimulation of the red nucleus, while the corresponding periods for IPSPs were 8.68 and 8.75 msec. The segmental delay of 1.3–2 msec for EPSPs and IPSPs generated in certain motoneurons in response to stimulation of both structures indicates that the shortest pathway for transmission of activity from the fibers of these tracts to the motoneurons may be disynaptic. At the same time, the possible presence of an additional neuron for most inhibitory pathways cannot be ruled out. Analysis of the results also suggests the presence of a common interneuronal apparatus for both systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.3, No.6, pp. 599–608, November–December, 1971.  相似文献   

10.
In cats anesthetized with chloralose and pentobarbital and immobilized with D-tubocurarine activity of 423 pericruciate cortical neurons was recorded (342 extra- and 81 intracellularly); 78 neurons had spontaneous activity. Stimulation of the pyramidal tract evoked antidromic action potentials in the pyramidal neurons with a latent period of 0.5–16.0 msec. Recurrent and lateral PSPs also developed both in pyramidal and in unidentified neurons in all layers of the cortex; IPSPs were recorded in 46.7% of neurons, EPSPs in 21.0%, mixed reponses in 26.0%, and no visible changes were found in 6.3%. The latent period of the IPSPs was 1.5–14.0 msec, their amplitude 1.3–17.0 mV, their rise time from 4 to 18 msec, and their duration 18–120 msec (sometimes up to 250–500 msec). In 30% of cases in which IPSPs appeared, their course was divided into two phases: fast (duration 10–20 msec) and slow. EPSPs developed after a latent period of 2.6–29.0 msec; their amplitude was 1.0–7.8 mV and their duration from 10.0 to 50.0 msec. In 51.2% of spontaneously active neurons the antidromic volley inhibited their activity in the course of 200–400 msec, in 19.5% it stimulated their activity, in 7.4% it had a mixed effect, and in 21.9% no visible change took place in their activity. The role and participation of axon collaterals of pyramidal neurons and of the interneuronal system in the formation of these processes are discussed.  相似文献   

11.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

12.
Stimulation of the infraorbital nerve at strengths 1.4–2.5 times higer than the threshold of excitation of A fibers in cats anesthetized with chloralose and pentobarbital evoked EPSPs with an amplitude up to 3.0 mV and a duration of 9–15 msec in 69% of masseter motoneurons after 1.5–3.0 msec. These EPSPs were complex and formed by summation of simpler short-latency and long-latency EPSPs. The short-latency EPSPs appeared in response to infraorbital nerve stimulation at 1.1–1.5 thresholds and had a slow rate of rise (2.5–4.5 msec, mean 3.7±0.4 msec), low amplitude (under 2.0 mV), and short duration (5–6 msec). Their latent period varied from 1.5 to 3.0 msec (mean 2.1±0.2 msec). The shortness of the latent period and its constancy during stimulation of the nerve at increasing strength, and also the character of development of facilitation and inhibition of the EPSP during high-frequency stimulation suggests that these EPSPs are monosynaptic. The slow rate of rise suggested that these EPSPs arise on distal dendrites of the motoneurons. Long-latency EPSPs appeared 7–9 msec after stimulation of the infraorbital nerve at 1.1–1.5 thresholds. Their amplitude reached 1.5–2.0 mV and their duration 7–9 msec. The long duration of the latent period combined with low ability to reproduce high-frequency stimulation (up to 30/sec) points to the polysynaptic origin of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 583–591, November–December, 1977.  相似文献   

13.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

14.
Extra — and intracellular unit responses in area AII to stimulation of geniculocortical fibers and of area AI were studied in cat immobilized with D-tubocurarine. In response to stimulation of geniculocortical fibers, antidromic mono-, di-, and polysynaptic spikes were generated by neurons in area AII. The number of antidromic responses in area AII was about half that found in area AI under the same conditions of stimulation. Most of the orthodromic responses were di- and polysynaptic. Intracellular responses also were recorded in the form of EPSPs, EPSP-IPSPs, and primary IPSPs. Stimulation of area AI evoked responses in the neurons of area AII with latent periods of 0.75–6.0, 6.1–16.0, 18.0–23.0, and 60–100 msec. Removal of the medial geniculate body led to a marked decrease in the number of responses with latent periods of 6.1–16.0 msec. Some neurons of area AII responded by spikes to stimulation of both the geniculocortical fibers and area AI. Comparison of the latent periods of responses to these two types of stimulation showed that impulses from area AI to area AII are directed both to input neurons for impulses from the medial geniculate body and to neurons at subsequent stages of the intracortical neuronal change. In response to stimulation of cortical area AI, disynaptic IPSPs appeared in many neurons of area AII. Only one IPSP with a latent period of 1.0 msec, regardable as monosynaptic, was recorded.  相似文献   

15.
Postsynaptic potentials produced by stimulating three sites of the midbrain superior colliculus were examined in motoneurons innervating the sternocleidomastoid, the trapezius, and the platysma cervical muscles in anesthetized cats. Stimulating the ipsilateral colliculus produced EPSP in the motoneurons as well as action potentials with a latency of 1.5–3.5 msec, averaging 2.6 ± 0.1 msec. Stimulation of the contralateral colliculus evoked EPSP with a latency of 1.5–3.2 msec and averaging 2.1 ± 0.1 msec together with IPSP with latency ranging from 2.6 to 5.0 msec. It is postulated that these postsynaptic responses are both monosynpatic and bisynaptic in nature. This type of synaptic action is assumed to be one of the mechanisms responsible for coordinated head movements produced by tectofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 197–202, March–April, 1986.  相似文献   

16.
Experiments on anesthetized cats with partial transection of the spinal cord showed that reticulo-spinal fibers in the ventral part of the lateral funiculus participate in the inhibition of polysynaptic reflexes evoked by stimulation of the ipsi- and contralateral reticular formation. The reticulo-fugal wave in the ventrolateral funiculus evoked comparatively short (up to 70 msec) IPSPs in some motoneurons of the internal intercostal nerve investigated and at the same time evoked prolonged (up to 500 msec) inhibition of IPSPs caused by activation of high-threshold segmental afferents. This wave also led to the appearance of IPSPs in 14 of 91 (15.5 %) thoracic spinal interneurons studied. The duration of these IPSPs did not exceed 100 msec; meanwhile, segment excitatory responses of 21 of 43 interneurons remained partly suppressed for 120–500 msec. It is concluded that the inhibitory action of the lateral reticulo-spinal system on segmental reflexes is due to several synaptic mechanisms, some of them unconnected with hyperpolarization of spinal neurons. The possible types of mechanisms of this inhibition are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 162–172, March–April, 1978.  相似文献   

17.
Postsynaptic potentials of motoneurons in the facial nerve nucleus, evoked by stimulation of the cranial nerves (trigeminal, hypoglossal, facial) and of the sensomotor cortex were investigated in cats anesthetized with chloralose and pentobarbital. Two functionally opposite groups of motoneurons were found to exist in the facial nucleus. Stimulation of the afferent nerves and cortex evoked the appearance of EPSPs in the first of these groups and IPSPs in the second. The latency and duration of the PSPs indicate that afferent and corticofugal impulses reach the facial motoneurons along polysynaptic pathways. Interneurons on which wide convergence of influences travelling along afferent fibers and of the cortex, were found in the region of the facial nucleus. The possible neuronal pathways concerned with the transmission of afferent and corticofugal impulses to the facial motoneurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 391–400, July–August, 1972.  相似文献   

18.
Effects induced in motoneurons and interneurons of the cervical enlargements of the cat spinal cord by stimulation of the lateral and ventral funiculi at the lower thoracic level were studied under conditions producing degeneration of fibers of descending brain systems. Stimulation of this sort evoked PSPs (mainly of mixed character) in 57 of 90 motoneurons tested. In nine motoneurons the primary response consisted of monosynaptic EPSPs evoked by activity of fibers of the lateral funiculus, and in the rest it consisted of polysyanptic (at least disynaptic) EPSPs and IPSPs. Polysynaptic effects arising in the neuron in response to stimulation of the lateral and ventral funiculi usually differed only quantitatively. The intensity of excitatory synaptic action on motoneurons of the proximal muscle (especially thoracid) was much greater than that on motoneurons of distal muscles. Nearly all motoneurons with no synaptic action belonged to the latter group. Stimulation of the lateral and ventral funculi facilitated synaptic action induced in motoneurons by stimulation of high-threshold segmental afferents and led to excitation of interneurons located in the vectral quadrant, and had no effect on interneurons in the dorsal regions of gray matter. These effects are regarded mainly as the result of excitation of long ascending propriospinal pathways in the cervical parts of the cord; it is also postulated that some of them are evoked by the arrival of activity along collaterals of descending propiospinal pathways to the neurons in this region.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 339–347, July–August, 1979.  相似文献   

19.
Experiments on cats with simultaneous extracellular recording, stimulation of single propriospinal neurons, and intracellular recording of unitary postsynaptic potentials from motoneurons, followed by computer averaging showed that direct stimulation of individual propriospinal cells receiving mono- and disynaptic influences from the medial reticular formation can evoke monosynaptic EPSPs and IPSPs in lower lumbar motoneurons. The amplitude of these EPSPs was 49.6±6.0 and of the IPSPs 28.9±2.9 µV and their synaptic delay was 0.34±0.05 msec. The same propriospinal neuron of the ventral horn of the upper lumbar segments may be connected with several motoneurons of the hind limb muscles.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 300–306, May–June, 1977.  相似文献   

20.
Parameters of the electrical activity of the isolated vestibulocerebellar complex of the frog were studied under in vitro conditions. In the region of the vestibular nucleus (nc. VIII), in the presence of stimulation of the stato-acoustic nerve (n. VIII), responses from efferent vestibular neurones and from unidentified (probably vestibulospinal) neurones were recorded. The latent periods of their excitatory postsynaptic potentials (EPSPs, 1.4-2.2 ms) were indicative of mono- and disynaptic connection. Inhibitory postsynaptic potentials (IPSPs) were also observed. Stimulation of the auricular lobe of the cerebellum evoked monosynaptic IPSPs, an EPSP-IPSP complex or pure EPSPs in nc. VIII, the latter probably by way of collaterals to the cerebellum. The inhibitory character of the effect of efferents from the cerebellum to the neurones of nc. VIII was demonstrated in the focal synaptic potential and in spontaneous and evoked unit activity. If n. VIII was stimulated, both focal and unit extra- and intracellular responses characteristic of activation of the Purkinje cells by mossy (MF) or climbing (CF) afferent fibres were recorded in the cerebellar cortex. The electrophysiological picture indicates that both synaptic transmission and the functional manifestations of the individual neurones are preserved in the tested preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号