首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments on frogs with the use of the microelectrode techniques were made to study the effect of tenotomy and immobilization of a limb with a metal cast in the extension position on the properties of the membrane of muscle fibers. Two weeks after tenotomy there were no changes in the magnitude of the membrane rest potential, input resistance and time constant of the membrane of muscle fibers or in the pattern of its sensitivity to acetylcholine. Two and three weeks after the limb immobilization no changes in the membrane rest potential and passive electrical properties of the muscle membrane were recorded either. However, if the time elapsed after immobilization was 2 and 3 weeks, the zone of the sensitivity of muscle fibers to acetylcholine was slightly greater than in the control. It is suggested that the motor activity in the frog per se is not the determinant of the muscle fiber differentiation preset by the nervous system.  相似文献   

2.
Using polyclonal and monoclonal antibodies to visualize under a confocal microscope type-1 cannabinoid receptors (CB1) and acetylcholine (ACh) receptors, respectively, or α-bungarotoxin conjugated to Alexa-Fluor 555 for Ach receptors, we found that they colocalize on twitch muscle fibers in the frog (Rana pipiens). We show that both the CB1 and ACh receptors are present on the fast skeletal muscle motor end-plate. The CB1 receptor is present along the entire membrane of the muscle fiber, whereas the ACh receptor is expressed primarily at the motor end-plate. Analysis of the colocalization produced a cross-correlation coefficient of 0.519 ± 0.021 (n = 9) for both receptors at the muscle motor end-plate. This study suggests a close proximity between these two types of receptor proteins and that they could interact. CB1 could function at some stage of excitation–contraction coupling in these muscle fibers. However, further investigation is needed in order to clarify these issues.  相似文献   

3.
Membrane characteristics were studied in isolated muscle strands from auricles of frogs using the "square pulse" technique. Changes in the time course and spatial spread of subthreshold electrotonic potentials were measured. If acetylcholine is applied in concentrations which cause slowing or stoppage of the heart beat, the following changes are produced: (a) the length constant (λ) of the membrane is reduced, (b) the time constant is shortened. The effects are reversible and increase with acetylcholine concentration. The membrane changes caused by acetylcholine dimmish with time. It is concluded that during acetylcholine inhibition, as well as during vagal inhibition, the conductance of the muscle membrane is increased. Appreciable changes in the resting membrane potential need not accompany inhibition.  相似文献   

4.
Recordings were made of post-denervation changes in resting potential and input resistance in muscle fiber membrane, as well as anode break, tetrodotoxin resistant action potentials, and asynaptic sensitivity to acetylcholine during experiments on cultured diaphragm muscle fiber isolated from rats. Addition of -endorphin to the culture medium prevented increase in the input resistance of muscle fibers and reduced development of asynaptic transmitter sensitivity in the membrane, but failed to change the ability of the denervated muscle membrane to generate anode break and tetrodotoxin-resistant action potentials. The effects of -endorphin were not abolished by naloxone, which itself had endorphin-like powers as measured by the indices used in this research. It is therefore suggested that -endorphin or like substances could be claimed as the neurotrophic factors responsible for controlling passive electrical properties of the muscle fiber membrane and contribute to regulating its acetylcholine sensitivity.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 759–766, November–December, 1987.  相似文献   

5.
Effects of temperature on properties of flight neurons in the locust   总被引:1,自引:0,他引:1  
High ambient temperatures increase the wing-beat frequency in flying locusts, Locusta migratoria. We investigated parameters of circuit and cellular properties of flight motoneurons at temperatures permissive for flight (20–40 °C). As the thoracic temperature increased motoneuronal conduction velocity increased from an average of 4.40 m/s at 25 °C to 6.73 m/s at 35 °C, and the membrane time constant decreased from 11.45 ms to 7.52 ms. These property changes may increase locust wing-beat frequency by affecting the temporal summation of inputs to flight neurons in the central circuitry. Increases in thoracic temperature from 25–35 °C also resulted in a hyperpolarization of the resting membrane potentials of flight motoneurons from an average of-41.1 mV to -47.5 mV, and a decrease of input resistances from an average of 3.45 M to 2.00 M. Temperature affected the measured input resistance both by affecting membrane properties, and by altering synaptic input. We suggest that the increase in conduction velocity Q10=1.53) and the decrease of membrane time constant (Q10=0.62) would more than account for the wing-beat frequency increase (Q10=1.15). Hyperpolarization of the resting membrane potential (Q10=1.18) and reduction in input resistance (Q10=0.54) may be involved in automatic compensation of temperature effects.Abbreviations ANOVA analysis of variance - CPG central pattern generator - DL dorsal longitudinal muscles - EMG electromyographic - MN motoneuron - PSP post synaptic potential - Q10 temperature coefficient - RMP resting membrane potential - S.D. standard deviation - SR stretch receptor  相似文献   

6.
For malignant cells cultured from a human astrocytoma, electrophysiological characteristics of the plasma membrane included specific resistivity of 446.82 ± 279.5 ohm·cm2, specific capacitance of 0.758 ± 0.52 microfarads/cm2, time constant 0.318± 0.10 msec. The resting membrane potential averaged-14.07 ± 7.4 mV; the mean input resistance 8.1 ± 4.0 megohms. The average cell area was 1638 ± 585 ±2 for contactual and 1919 ± 989 ±2 for noncontactual cells. Changes in input resistance and resting membrane potential were observed with increasing time in culture, possibly reflecting cell cycling. There did not appear to be electrical coupling in this cell line.  相似文献   

7.

Background and purpose

Vascular endothelial and smooth muscle cell phenotypes may change dramatically after isolation and in cell cultures. This study was designed to investigate gap junctions coupling in an integrated intact preparation and to test if KIR channels modulate resting membrane conductance in “in situ” endothelial cells (EC), and acetylcholine (ACh)-evoked relaxation of the rat superior mesenteric artery.

Experimental approach

Whole cell blind patch recordings of ionic currents from in situ EC, dye-coupling experiments, and functional studies were performed in rat superior mesenteric artery.

Key results

EC were dye-coupled through gap junctions. 18β-glycyrretinic acid (25 μM) decreased outward and inward currents, the 80% decay of time and time constant of the capacitative transients, capacitance, and increased input resistance. Barium chloride (30 μM) decreased resting and ACh-evoked inward currents, the sensitivity of ACh-evoked relaxation, and decreased both the sensitivity and the maximal relaxation to S-nitroso-N-acetyl penicillamine in arteries with, but not in arteries without endothelium.

Conclusions

The present results suggest that the EC layer of this large artery is electrically coupled, and that KIR channels regulate resting inward conductance, hence suggesting that they are of importance for resting membrane potential in in situ EC. Moreover, EC KIR channels are involved in ACh-evoked relaxation.  相似文献   

8.
Experiments on isolated neurons of the molluskPlanorbarius corneus under membrane voltage clamp conditions showed that furosemide (2×10?4 to 1×10?3 g/mg) inhibits the increase in chloride conductance evoked by iontophoretic application of acetylcholine, suberyldicholine, and gamma-aminobutyric acid (GABA). If microelectrodes filled with potassium sulfate were used in the experiments furosemide did not shift the reversal potential, but when microelectrodes filled with potassium chloride were used the reversal potential of the chloride-dependent responses became less negative. In the last case, the action of furosemide evidently was exhibited not only on passive chloride conductance of the chemoreceptive membrane, but also on active chloride transport. Furosemide had no effect on sodium- and potassium-dependent responses evoked by activation of choline receptors. Unlike D-tubocurarine, which selectively blocks acetylcholine effects, furosemide also depressed conductance evoked by GABA. In the presence of furosemide chloride-dependent responses not only were reduced in amplitude, but also developed more slowly. It is postulated that the action of furosemide is aimed not at receptors, but at chloride channels of the chemoreceptive membrane common to both acetylcholine and GABA.  相似文献   

9.
Mitofusin 2 (Mfn2) is a dynamin-like protein anchored in the outer mitochondrial membrane that plays a crucial role in ensuring optimal mitochondrial morphological homeostasis. It has been shown that reduced expression of Mfn2 is associated with insulin resistance, but the mechanism is still unclear. We investigated whether Mfn2 deficiency leads to impaired insulin sensitivity via elevated oxidative stress. L6 skeletal muscle cells were treated with palmitate and Mfn2 expression was repressed by transfection with antisense Mfn2. Levels of antioxidant enzymes, reactive oxygen species (ROS), the phosphorylation of c-Jun N-terminal Kinase (JNK) and nuclear factor-κB (NF-κB) and the mitochondrial membrane potential (Δψm) were measured. The results showed palmitate-induced insulin resistance of skeletal muscle cells was accompanied by Mfn2 repression. Meanwhile, the cells had decreased Δψm and activity of antioxidant enzymes which could increase production of ROS, phosphorylation of JNK and NF-κB. When Mfn2 was up-regulated in palmitate-treated cells, oxidative stress and insulin resistance was alleviated. Furthermore, knock-down of Mfn2 in control cells enhanced oxidative stress. Mfn2 deficiency led to increased superoxide concentration and activation of JNK as well as NF-κB associated with insulin signaling. In conclusion, Mfn2 is a potent repressor for oxidative stress and regulation of Mfn2 expression may prove to be a potential method to circumvent insulin resistance.  相似文献   

10.
The trans-plasma membrane behavior in virus-infected grapevine leaves was investigated and the effects of six viruses included in European and Italian certification protocols of grapevine on trans-plasma membrane potential (t-PMEP) or electron transport (t-PMET) activity were evaluated. Electrophysiological tests were carried out on leaf samples of virus-infected Vitis vinifera cv. Sangiovese. Microelectrodes were placed in the central zone of the mesophyll for membrane potential measurement, while carbon fiber microelectrodes were used to estimate the membrane reductase activity of virus-infected resting cells. Viruses, the presence of which increased the NADH content, interfere differently with t-PMEP and t-PMET. Those that did not interfere negatively with membrane potential caused an increment in cell reductase activity, while virus-infected samples which showed a stressed status—as suggested by low energy availability and difficulty in the impalement procedure—were characterized by a lower t-PMET activity despite NADH content.  相似文献   

11.
Studies have been made on changes in the electrical properties of muscle membrane and lipid content of two types of myotomal fibers in the tail of tadpoles during metamorphosis. It was shown that during premetamorphosis, peripheral and inner muscle fibers do not differ with respect to their effective resistance, time constant of the membrane and lipid content; the resting membrane potential is higher in the inner fibers. During further development of the tadpoles, differentiation of muscle fibers takes place, and to the beginning of the climax the inner fibers attain lower values of the effective resistance and time constant, as well as lower content of lipids in their sarcoplasm; the difference in the level of resting membrane potential between the peripheral and inner fibers increases. The data obtained suggest that the inner fibers may be referred to as fast ones, whereas the peripheral ones--as slow. These data also reveal specific features in neurotrophic regulation of functional properties of muscle fibers in tadpoles.  相似文献   

12.
The contractility of the frog sartorius muscle was suppressed after treatment with a Ringer solution added with ethylene glycol (EGR). No contraction was elicited by nerve stimulation when the muscle was brought back to normal Ringer solution after having been soaked in 876 mM EGR for 4 hr or in 1095 mM EGR for 2 hr. However, the action potential of normal amplitude was generated and followed by a depolarizing afterpotential. The resting membrane potential was slightly decreased from the mean normal value of –91.1 mv to –78.8 mv when 1095 mM EGR was used, and to –82.3 mv when 876 mM EGR was used, but remained almost constant for as long as 2 hr. The afterpotential that follows a train of impulses and a slow change in membrane potential produced by a step hyperpolarizing current (so-called "creep") were suppressed after treatment with ethylene glycol. The specific membrane capacity decreased to about 50% of the control values while the specific membrane resistance increased to about twice the control values Therefore, the membrane time constant remained essentially unchanged. The water content of the muscle decreased by about 30% during a 2 hr immersion in 1095 mM EGR, and increased by about 30% beyond the original control level after bringing the muscle back to normal Ringer. The intracellular potassium content did not change significantly during these procedures. Some differences between the present results and those obtained with glycerol are discussed.  相似文献   

13.
Dihydroxylation of dehydroepiandrosterone (DHEA) is an essential step in the synthesis of many important pharmaceutical intermediates. However, the solution to the problem of low biohydroxylation conversion in the biotransformation of DHEA has yet to be found. The effects of natural oils on the course of dihydroxylation of DHEA to 3β,7α,15α-trihydroxy-5-androsten-17-one (7α,15α-diOH-DHEA) were studied. With rapeseed oil (2 %, v/v) addition, the bioconversion efficiency was improved, and the 7α,15α-diOH-DHEA yield was increased by 40.8 % compared with that of the control at DHEA concentration of 8.0 g/L. Meantime, the ratio of 7α,15α-diOH-DHEA to 7α-OH-DHEA was also increased by 4.5 times in the rapeseed oil-containing system. To explain the mechanism underlying the increase of 7α,15α-diOH-DHEA yield, the effects of rapeseed oil on the pH of the bioconversion system, the cell growth and integrity of Gibberella intermedia CA3-1, as well as the membrane composition were systematically studied. The addition of rapeseed oil enhanced the substrate dispersion and maintained the pH of the system during bioconversion. Cells grew better with favorable integrity. The fatty acid profile of G. intermedia cells revealed that rapeseed oil changed the cell membrane composition and improved cell membrane permeability for lipophilic substrates.  相似文献   

14.
A set of 18 synthetic uniform overlapping peptides spanning the entire extracellular part (residues 1–210) of the α-subunit of human acetylcholine receptor were studied for their binding activity of125I-labeled α-bungarotoxin and cobratoxin. A major toxin-binding region was found to reside within peptide α122–138. In addition, low-binding activities were obtained with peptides α34–49 and α194–210. It is concluded that the region within residues α122–138 constitutes a universal major toxin-binding region for acetylcholine receptor of various species.  相似文献   

15.
Currents evoked by iontophoretic applications of acetylcholine and postsynaptic currents evoked by single stimulation of the cervical sympathetic nerve were recorded in neurons of the isolated rabbit superior cervical ganglion with membrane voltage clamped and muscarinic acetylcholine receptors blocked by atropine (10?6 M). The α-neurotoxins from snake venom (α-bungarotoxin and α-cobratoxin) in a concentration of 10?6 M caused an increase in amplitude (potentiation) of the acetylcholine current, inhibition of that current, or initial potentiation followed by inhibition, in different neurons. Spectral analysis of the fluctuations of this current showed that α-neurotoxins affect neither the current through a single channel nor the duration of the open state of long-living channels (evidently extrasynaptic), but they approximately double the duration of the open state of long-living channels. This last effect in all probability causes potentiation of the acetylcholine current. The α-neurotoxins also depressed the amplitude of the postsynaptic current evoked by sympathetic nerve stimulation (on average by 44%) and lengthened its decline (on average by 24%). It is postulated that α-neurotoxins may both block and modify activity of the receptor-channel complex in the neurons tested, lengthening the duration of its open state. This latter mechanism of action of α-neurotoxins is exhibited only in long-living channels, evidence that the phamacological properties of the two populations of channels connected with nicotinic acetylcholine receptors are not identical.  相似文献   

16.
Some characteristics of myotubes cultured from slow and fast chick muscles   总被引:1,自引:0,他引:1  
Explant cultures were prepared from the slow anterior latissimus dorsi muscle and the fast posterior latissimus dorsi muscle of 15 day chick embryos. The morphology and growth pattern of myotubes from the two types of muscle were very similar. Intracellular microelectrode studies did not reveal consistent differences between the myotube types in regard to resting potential, input resistance, input time constant, or ability to produce active electrogenic responses. It is suggested that specific differentiation of the two muscles is determined by their innervation.  相似文献   

17.
The New World screwworm (NWS) Cochliomyia hominivorax (Coquerel) is one of the major myiasis-causing flies that injures livestock and leads to losses of ~US$ 2.7 billions/year in the Neotropics. Ivermectin (IVM), a macrocyclic lactone (ML), is the most used preventive insecticide for this parasite and targets the glutamate-gated chloride (GLUCLα) channels. Several authors have associated altered GluClα homologues to MLs resistance in invertebrates, although studies about resistance in NWS are limited to other genes. Here, we aimed to characterise the NWS GluClα (ChGluClα) cDNA and to search for alterations associated with IVM resistance in NWS larvae from a bioassay. The open reading frame of the ChGluClα comprised 1,359 bp and encoded a sequence of 452 amino acids. The ChGluClα cDNAs of the bioassay larvae showed different sequences that could be splice variants, which agree with the occurrence of alternative splicing in GluClα homologues. In addition, we found cDNAs with premature stop codons and the K242R SNP, which occurred more frequently in the surviving larvae and was located close to mutation (L256F) involved in ML resistance. Although these alterations were in low frequency, the ChGluClα sequencing will allow further studies to find alterations in the gene of resistant natural populations.  相似文献   

18.
The purpose of the present study was to examine changes in preadipocytes following the coculture of preadipocytes and adipocytes and the effects on the secretion of adipocytes and macrophages following induction of inflammation and insulin resistance. Mature adipocytes and RAW264.7 macrophages were treated with lipopolysaccharide and insulin to establish models of inflammation and insulin resistance, respectively. The mRNA expression levels of IL-6, MCP-1, and TNF-α in all adipocyte treatment groups were significantly greater compared with the control, and that of adiponectin was less (P < 0.05). In the RAW264.7 macrophages, the mRNA expression levels of IL-6 and TNF-α were greater than those in the control group (P < 0.05). Moreover, the results of this study confirmed that adipocytes and macrophages increased the secretion of inflammatory factors under conditions of induced inflammation and insulin resistance. In addition, 3T3-L1 adipocytes inhibited the proliferation and differentiation of preadipocytes when cocultured with adipocytes under conditions of inflammation and/or insulin resistance, and the phenotype of preadipocytes did not change.  相似文献   

19.
Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP–GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gαi3 in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gαi3·GDP would be useful for the analyses of the dynamics of Gαi3 and its interactions with various target molecules.  相似文献   

20.
Obesity has become a global public health problem associated with complications including type 2 diabetes, cardiovascular disease, and several cancers. Adipocyte differentiation (adipogenesis) plays an important role in obesity and energy homeostasis. Adipose tissue secretes multiple cytokines and adipokines which can cause the complications of obesity, especially insulin resistance. TNF-α, IL-6, leptin, and resistin have been identified as the main regulators of obesity and insulin activity. miR-378 is highly induced during adipogenesis and has been reported to be positively regulated in adipogenesis. In the current study, matured human adipocytes were treated with TNF-α, IL-6, leptin, or resistin on the 15th day after the induction of human pre-adipocyte differentiation. We demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR-378 probably is a novel mediator in the development of insulin resistance related to obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号