首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution and ultrastructure of terminals of the propriospinal fibers of the lateral funiculus in the cervical segments of the cat spinal cord were studied by the experimental degeneration method. A preliminary lateral hemisection of the spinal cord was carried out 5–6 months earlier at the level of segments C2 or C3 to destroy all the long descending pathways; the lateral funiculus was then divided at the level of C4 or C5. It was shown by the method of Fink and Heimer that terminals of descending and ascending propriospinal pathways damaged by the second division are distributed in the gray matter ipsilaterally in the lateral zones of Rexed's laminase V–VII and also in the dorsolateral motor nuclei. An electron-microscopic study showed that the synapses of the degenerating terminals are mainly axo-dendritic in type and account for 14.5% of the total number of terminals counted. Residual synaptic vesicles in these terminals were spherical in shape. The mean diameter of the degenerating myelinated propriospinal fibers in the lateral funiculus was 10±3 µ. The results of this investigation were compared with those of electrophysiological investigations of the function of propriospinal neurons.  相似文献   

2.
Depolarization of primary afferent terminals induced by selective activation of intersegmental connections of the substantia gelatinosa was investigated in cats anesthetized with pentobarbital. Depolarization was found to develop most rapidly in fibers of high-threshold muscular and cutaneous sensory nerves, but it was present only to a very slight degree in fibers of group Ia muscular afferents. It is suggested that the spread of activity inducing depolarization takes place in the substantia gelatinosa along a chain of excessively excited neurons. The possible role of primary afferent depolarization as a factor stabilizing coordinated activity of spinal neurons is discussed.  相似文献   

3.
Experiments were carried out on cats six days after complete transection of the spinal cord. Cord dorsum potentials (CDP) were recorded in the vicinity of the third lumbar segment during stimulation of the isolated dorsolateral funiculus (DLF). The CDP consist of a rapid monophasic potential (which apparently reflects antidromic excitation of the cells of Clarke's column) and two subsequent slow negative waves, which are replaced by a long positive oscillation. In form, time characteristics, and behavior during thythmic stimulation, this potential differs considerably from the CDP recorded during stimulation of the afferent nerves. The presence of a positive phase of the CDP indicates that stimulation of the DLF evokes primary afferent depolarization (PAD). Stimulation of the DLF causes inhibition of the CDP evoked by stimulation of the afferent nerve. The time course of this inhibition corresponds to the time course of presynaptic inhibition. It is demonstrated that stimulation of the afferent nerve (n. femoralis) inhibits slow components of the CDP evoked by stimulation of the DLF. This inhibition reaches a maximum at the 16th millisecond; its duration exceeds 300 msec. Stronger and more prolonged inhibition of the same components is observed when both the conditioning and the testing stimuli are administered to the DLF. Since primary afferents do not take part in CDP emergence during stimulation of the DLF, it may be hypothesized that the observed inhibition develops as a result of depolarization of interneuron axon terminals.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 520–527, September–October, 1970.  相似文献   

4.
The distribution of propriospinal fiber terminals of the lateral funiculus in the lumbar segments of the cat spinal cord was examined by light and electron microscopy. For the selective demonstration of these terminals, preliminary hemisectioning of the brain at the boundary of the thoracic and lumbar segment, eliminating all the long descending pathways, and subsequent hemisectioning or sectioning of the lateral funiculus at the level of the third lumbar segment was carried out. It was established by staining the degenerating endings (by the Fink—Heimer method) that the terminals of the descending and ascending propriospinal fibers, which form part of the lateral and ventral funiculi, are located mainly in the lateral and medial parts of lamina VII and the dorsal section of lamina VIII, according to Rexed, as well as in the regions adjacent to the dorsolateral and ventromedial motor nuclei. A large number of these terminals is found in the corresponding regions of the gray matter on the contralateral side of the brain. Since, in the case of selective injury of the lateral funiculus the number of degenerating terminals in lamina VIII is noticeably decreased, it can be assumed that the propriospinal neuron terminals of the ventral funiculus are concentrated mainly in lamina VIII. The axons of the propriospinal neurons extend over several segments both in the ascending and in the descending directions. It was shown in an electron microscopic study of the regions in which most of the propriospinal terminals are located that these terminals are of an axo-dendritic nature and terminate in the dendrites of both inter- and motor neurons. Their degeneration can be of the "light" or "dark" type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 401–407, July–August, 1971.  相似文献   

5.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

6.
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.  相似文献   

7.
Depolarization of primary afferent terminals in the cervical enlargement of the spinal cord evoked by activation of sensory nerves of the upper cervical segments (C2) was studied in cats anesthetized with pentobarbital. It was shown that low-threshold muscular and high-threshold cutaneous afferents of nerves of the forelimb were depolarized most strongly. Parallel with this depolarization, prolonged (over 0.5 sec) inhibition of the monosynaptic and polysynaptic flexor reflex developed. It is suggested that these influences are transmitted via pathways running in the posterior and lateral white columns. The results are discussed in connection with regulation of postural motor activity in vertebrates.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 190–197, March–April, 1982.  相似文献   

8.
Activity of reticulospinal neurons evoked by stimulation of the ventral, ventrolateral, dorsolateral, and dorsal funiculi of the spinal cord was recorded extracellularly in cats anesthetized with chloralose. Responses of 57 reticulospinal neurons, of which 22 projected into the ventral funiculus, 20 into the ventrolateral, and 15 into the dorsolateral, were studied. The functional properties (conduction velocity and refractory period) and the location of the neurons of the above-mentioned groups in the medulla did not differ appreciably. The most effective synaptic activation of all neurons was observed during stimulation of the dorsal and dorsolateral funiculi. Responses to stimulation of the dorsal funiculus had the lowest threshold. These responses arose in reticulospinal neurons of the ventral and ventrolateral funiculi after the shortest latent period. The effectiveness of synaptic influences from the dorsal and dorsolateral funiculi was identical in the group of neurons of the dorsolateral funiculus. Correlation between activity evoked by stimulation of the dorsal funiculus in reticulospinal neurons and peripheral nerves indicated that the responses appeared in these cells to stimulation of muscular (groups I and II) and cutaneous (group II) afferent fibers. The results indicate that impulses from low-threshold muscular and cutaneous afferents, which effectively activate reticulospinal neurons, are transmitted along ascending pathways of the dorsal funiculi.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 254–263, May–June, 1979.  相似文献   

9.
The development of intensive depolarization of terminals through stimulation of the afferent nerve or dorsal root of sufficient strength causes the appearance of antidromic discharges recordable as a dorsal-root reflex. The discharges were shown to spread simultaneously in the dorso-ventral direction, with consequent facilitation of spinal reflexes. The results suggest the possible existence of two types of effect of presynaptic depolarization on spinal afferent pathways.  相似文献   

10.
We have carried out intracellular recording from the motor neurons of the lumbar section of the cat spinal cord with electrical stimulation of the propriospinal axons descending in the dorsolateral funiculus. To prevent activation of the long descending pathways of the lateral funiculus, ipsilateral hemisectioning of the spine was performed in the segments L1-L2 10–14 days before the experiment. Stimulation of the dorsolateral funiculus in two segments cranial to the point of recording elicited in the flexor motor neurons essentially e.p.s.p. and in the extensor neurons i.p.s.p. with a latent period, on the average, of 1.97 and 1.93 msec, respectively. The amplitude of such p.s.p. considerably rose with rise in the frequency of stimulation of the funiculus to 50–100 a second. Activation of the segmental interneurons was observed only in a few cases. It is assumed that the synaptic processes elicited in the lumbar motor neurons are the result of the monosynaptic influences of the propriospinal neurons.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 5–14, July–August, 1969.  相似文献   

11.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

12.
No direct evidence has been found for expression of functional AMPA receptors by dorsal root ganglion neurons despite immunocytochemical evidence suggesting they are present. Here we report evidence for expression of functional AMPA receptors by a subpopulation of dorsal root ganglion neurons. The AMPA receptors are most prominently located near central terminals of primary afferent fibers. AMPA and kainate receptors were detected by recording receptor-mediated depolarization of the central terminals under selective pharmacological conditions. We demonstrate that activation of presynaptic AMPA receptors by exogenous agonists causes inhibition of glutamate release from the terminals, possibly via primary afferent depolarization (PAD). These results challenge the traditional view that GABA and GABA(A) receptors exclusively mediate PAD, and indicate that PAD is also mediated by glutamate acting on presynaptically localized AMPA and kainate receptors.  相似文献   

13.
Summary In the upper dorsal horn of the rat lumbosacral spinal cord, substance P and somatostatin are present in two distinct and different populations of primary central afferent terminals. Substance-P-positive terminals are mainly concentrated in lamina I, while somatostatin-positive terminals are confined to lamina II. Although these two populations of primary afferent terminals differ at light- and electron-microscopic level, they are equally affected by transganglionic degenerative atrophy (TDA) which is induced by the blockade of axoplasmic transport in the segmentally related, ipsilateral sensory nerve by the local application of Vinblastin, a microtubule inhibitor. In consequence, substance P and somatostatin are depleted in the medial and intermediate portions of the upper dorsal horn, while the lateralmost area, which represents the postaxial portion of the dermatome, remains virtually intact. Substance P and somatostatin in propriospinal elements and the axonal meshwork within the dorsolateral funicle are not affected by TDA. Neurotensine, a propriospinal neuropeptide, does not show any alterations in the affected spinal segments.This work was supported by research grant no. 06/4-01/449 from the Hungarian Ministry of Health and no. 375/82/3.2 from the Hungarian Academy of Sciences  相似文献   

14.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

15.
Effects of dopamine on dorsal root potentials were investigated during experiments on a segment of spinal cord isolated from 12- to 18-day-old rats. Applying dopamine to the brain was found to produce a slow, reversible, dose-dependent depolarization at primary afferent fiber terminals. This dopamine-induced depolarization was retained during complete blockade of synaptic transmission brought about by exchanging calcium ions in the perfusing fluid by magnesium or manganese ions. Minimum dopamine concentration required to produce this effect was 1·10–10–1·10–9 M. Peak amplitude of depolarization equaled 1.5 mV. Duration of this reaction ranged from 5.5 to 36.7 min, depending on the duration and concentration of dopamine application. Depolarizing response to dopamine differed considerably from GABA-induced dorsal root depolarization in amplitude and rate of rise. Haloperidol, a dopamine antagonist, reduced dopamine-induced dorsal root depolarization. Findings indicate that dopamine acts directly on the membrane of primary afferent fiber terminals, shifting membrane potential toward depolarization. This raises the possibility that dopaminergic brainstem-spinal pathways may exert an effect on sensory information transmission in segmental reflex arcs already traveling to the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 741–748, November–December, 1987.  相似文献   

16.
K. V. Baev 《Neurophysiology》1980,12(5):305-311
Changes in electrical polarization of primary afferent terminals in the lumbosacral portion of the spinal cord were investigated during fictitious locomotion in immobilized decorticated and spinal cats. Fictitious locomotion was accompanied by stable hyperpolarization of the afferent terminals, against the background of which they were periodically depolarized in rhythm with efferent activity. These tonic and phasic changes were observed in terminals of all groups of afferent fibers tested: cutaneous and muscular (Ia and Ib). Periodic in-phase depolarization was carried out in different ipsilateral segments of the lumbosacral enlargement. During ficitious galloping changes in depolarization of the primary efferents were in phase on different sides; during fictitious walking, these periodic changes were out of phase. On the basis of these results the physiological importance of changes in electrical polarization of primary afferent terminals of the spinal locomotor generator is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 481–489, September–October, 1980.  相似文献   

17.
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an "inflammatory exudate solution" (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I-V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.  相似文献   

18.
The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.  相似文献   

19.
Agmatine (decarboxylated arginine) was originally identified in the CNS as an imidazoline receptor ligand. Further studies demonstrated that agmatine antagonizes NMDA receptors and inhibits nitric oxide synthase. Intrathecally administered agmatine inhibits opioid tolerance and hyperalgesia evoked by inflammation, nerve injury, and intrathecally administered NMDA. These actions suggest an anti-glutamatergic role for agmatine in the spinal cord. We have previously reported that radiolabeled agmatine is transported into spinal synaptosomes in an energy- and temperature-dependent manner. In the present study, we demonstrate that agmatine is releasable from purified spinal nerve terminals upon depolarization. When exposed to either elevated potassium or capsaicin, tritiated agmatine (but not its precursor L-arginine or its metabolite putrescine) is released in a calcium-dependent manner. Control experiments confirmed that the observed release was specific to depolarization and not due to permeabilization of or degradation of synaptosomes. That capsaicin-evoked stimulation results in agmatine release implicates the participation of primary afferent nerve terminals. Radiolabeled agmatine also accumulates in purified spinal synaptosomal vesicles in a temperature-dependent manner, suggesting that the source of releasable agmatine may be vesicular in origin. These results support the proposal that agmatine may serve as a spinal neuromodulator involved in pain processing.  相似文献   

20.
The actions of serotonin on frog primary afferent terminals and cell bodies   总被引:1,自引:0,他引:1  
The actions of serotonin (5-HT) were studied in the isolated frog spinal cord and dorsal root ganglion preparations. In the spinal cord, 5-HT increased the spontaneous activity recorded from dorsal roots, facilitated evoked spinal reflexes and produced fast and slow primary afferent depolarization (PAD). A direct action of 5-HT on primary afferent terminals is likely since 5-HT induced PAD remained in the presence of 1 microM tetrodotoxin and 2 mM Mn2+. The direct action of 5-HT on primary afferent terminals was blocked by methysergide and attenuated by concentrations of Mn2+ in excess of that required to block transmitter release. Cell bodies of the dorsal root ganglion were also depolarized by 5-HT. A slow hyperpolarization occasionally followed the initial depolarization. The depolarizing action of 5-HT in the dorsal root ganglion was also attenuated by treatment with Mn2+. It is concluded that 5-HT acts directly on frog primary afferents and that this influence may involve a calcium sensitive process. The dorsal root ganglion response to 5-HT appears to be a suitable model of the afferent terminal response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号