首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methionine alone did not allow biosynthesis of prodigiosin (2-methyl-3-amyl-6-methoxyprodigiosene) in nonproliferating cells (NPC) of Serratia marcescens strain Nima. However, when methionine was added to NPC synthesizing prodigiosin in the presence of other amino acids, the lag period for synthesis of prodigiosin was shortened, an increased amount of the pigment was formed, and the optimal concentrations of the other amino acids were reduced. Less prodigiosin was synthesized when addition of methionine was delayed beyond 4 h. The specific activity of prodigiosin synthesized by addition of (14)CH(3)-methionine was 40 to 50 times greater than that synthesized from methionine-2-(14)C or (14)COOH-methionine. NPC of mutant OF of S. marcescens synthesized norprodigiosin (2-methyl-3-amyl-6-hydroxyprodigiosene), and the specific activity of this pigment synthesized in the presence of (14)CH(3)-methionine was only 5 to 13 times greater than that synthesized from methionine-2-(14)C or (14)COOH-methionine. A particulate, cell-free extract of mutant WF of S. marcescens methylated norprodigiosin to form prodigiosin. When the extract was added to NPC of mutant OF synthesizing norprodigiosin in the presence of (14)CH(3)-methionine, the prodigiosin formed had 80% greater specific activity than the norprodigiosin synthesized in the absence of the extract. The C6 hydroxyl group of norprodigiosin was methylated in the presence of the extract and methionine. Biosynthesis of prodigiosin by NPC of strain Nima also was augmented by addition of S-adenosylmethionine. Various analogues of methionine such as norleucine, norvaline, ethionine, and alpha-methylmethionine did not affect biosynthesis of prodigiosin by NPC either in the presence or absence of methionine.  相似文献   

2.
Biosynthesis of PF1022A and related cyclooctadepsipeptides   总被引:3,自引:0,他引:3  
PF1022A belongs to a recently identified class of N-methylated cyclooctadepsipeptides (CODPs) with strong anthelmintic properties. Described here is the cell-free synthesis of this CODP and related structures, as well as the purification and enzymatic characterization of the responsible synthetase. For PF1022A synthesis extracts of Mycelia sterilia were incubated with the precursors L-leucine, D-lactate, D-phenyllactate, and S-adenosyl-L-methionine in the presence of ATP and MgCl(2). A 350-kDa depsipeptide synthetase, PFSYN, responsible for PF1022A synthesis was purified to electrophoretic homogeneity. Like other peptide synthetases, PFSYN follows a thiotemplate mechanism in which the substrates are activated as thioesters via adenylation. N-Methylation of the substrate L-leucine takes place after covalent binding prior to peptide bond formation. The enzyme is capable of synthesizing all known natural cyclooctadepsipeptides of the PF1022 type (A, B, C, and D) differing in the content of D-lactate and D-phenyllactate. In addition to PF1022 types A, B, C, and D, the in vitro incubations produced PF1022F (a CODP consisting of D-lactate and N-methyl-L-leucine), as well as di-, tetra-, and hexa-PF1022 homologs. PFSYN strongly resembles the well documented enniatin synthetase in size and mechanism. Our results suggest that PFSYN, like enniatin synthetase, is an enzyme with two peptide synthetase domains and forms CODP by repeated condensation of dipeptidol building blocks. Due to the low specificity of the d-hydroxy acid binding site, D-lactate or D-phenyllactate can be incorporated into the dipeptidols depending on the concentration of these substrates in the reaction mixture.  相似文献   

3.
Summary The multifunctional enzyme enniatin synthetase was immobilized by adsorption to propyl agarose. The immobilized multienzyme retained 45% of the activity of the free enzyme; an operational half-life of about 15 h was estimated. Selective synthesis of several different enniatin homologues was achieved with propyl agarose-bound enniatin synthetase. In addition to enniatin A, B, and C formation, a selective synthesis of non-naturally occurring depsipeptides, containing norvaline, norleucine, or -aminobutyric acid as sole amino acid moieties, was observed.  相似文献   

4.
Covalently bound intermediates of enniatin B synthesis could be isolated from enniatin synthetase by treatment with performic acid. By comparison with products of mild alkaline cleavage of authentic enniatin B they could be identified as the dipeptide D-2-hydroxyisovaleryl-N-methylvaline and the corresponding tetrapeptide. Synthesis of enniatins apparently proceeds via condensation of dipeptides. This was confirmed by the use of the substrate analogue isovaleric acid, which has shown to be a strong inhibitor for enniatin synthesis by formation of N-isovaleryl-N-methyl valine.  相似文献   

5.
Anaerobic metabolism of immediate methane precursors in Lake Mendota.   总被引:10,自引:10,他引:0       下载免费PDF全文
Lake Mendota sediments and the immediate overlying water column were studied to better understand the metabolism of the methanogenic precursors H2/CO2 and acetate in nature. The pool size of acetate (3.5 microns M) was very small, and the acetate turnover time (0.22h) was very rapid. The dissolved inorganic carbon pool was shown to be large (6.4 to 8.3 mM), and the turnover time was slow (111 H.). CO2 was shown to account for 41 +/- 5.5% of the methane produced in sediment. Acetate and H2/CO2 were simultaneously converted to CH4. The addition of H2 to sediments resulted in an increase specific activity of CH4 from H(14)CO3- and a decrease in specific activity of CH4 from [2-14C]acetate. Acetate addition resulted in a decrease in specific activity of CH4 from H(14)CO3-. The metabolism of H(14)CO3- or [2-14C]acetate to 14CH4 was not inhibited by addition of acetate or H2. After greater than 99% of added [2-14C]acetate had been turned over, 42% of the label was recovered as 14CH4 20% was recovered as 14CO2 and 38% was incorporated into sediment. Inhibitor studies of [2-14C]acetate metabolism in sediments demonstrated that CHCl3 completely inhibited CH4 formation, but not CO2 production. Air and nitrate addition inhibited CH4 formation and stimulated CO2 production, whereas fluoroacetate addition totally inhibited acetate metabolism. The oxidation of [2-14C]acetate to 14CO2 was shown to decrease with time when sediment was incubated before the addition of label, suggesting depletion of low levels of an endogenous sediment electron acceptor. Acetate metabolism varied seasonally and was related to the concentration of sulfate in the lake and interstitial water. Methanogenesis occurred in the sediment and in the water immediately overlying the sediment during period of lake stratification and several centimeters below the sediment-water interface during lake turnovers. These data indicate that methanogenesis in Lake Mendota sediments was limited by "immediate" methane precursor availability (i.e., acetate and H2), by competition for these substrates by nonmethanogens, and by seasonal variations which altered sediment and water chemistry.  相似文献   

6.
Anaerobic metabolism of immediate methane precursors in Lake Mendota.   总被引:8,自引:0,他引:8  
Lake Mendota sediments and the immediate overlying water column were studied to better understand the metabolism of the methanogenic precursors H2/CO2 and acetate in nature. The pool size of acetate (3.5 microns M) was very small, and the acetate turnover time (0.22h) was very rapid. The dissolved inorganic carbon pool was shown to be large (6.4 to 8.3 mM), and the turnover time was slow (111 H.). CO2 was shown to account for 41 +/- 5.5% of the methane produced in sediment. Acetate and H2/CO2 were simultaneously converted to CH4. The addition of H2 to sediments resulted in an increase specific activity of CH4 from H(14)CO3- and a decrease in specific activity of CH4 from [2-14C]acetate. Acetate addition resulted in a decrease in specific activity of CH4 from H(14)CO3-. The metabolism of H(14)CO3- or [2-14C]acetate to 14CH4 was not inhibited by addition of acetate or H2. After greater than 99% of added [2-14C]acetate had been turned over, 42% of the label was recovered as 14CH4 20% was recovered as 14CO2 and 38% was incorporated into sediment. Inhibitor studies of [2-14C]acetate metabolism in sediments demonstrated that CHCl3 completely inhibited CH4 formation, but not CO2 production. Air and nitrate addition inhibited CH4 formation and stimulated CO2 production, whereas fluoroacetate addition totally inhibited acetate metabolism. The oxidation of [2-14C]acetate to 14CO2 was shown to decrease with time when sediment was incubated before the addition of label, suggesting depletion of low levels of an endogenous sediment electron acceptor. Acetate metabolism varied seasonally and was related to the concentration of sulfate in the lake and interstitial water. Methanogenesis occurred in the sediment and in the water immediately overlying the sediment during period of lake stratification and several centimeters below the sediment-water interface during lake turnovers. These data indicate that methanogenesis in Lake Mendota sediments was limited by "immediate" methane precursor availability (i.e., acetate and H2), by competition for these substrates by nonmethanogens, and by seasonal variations which altered sediment and water chemistry.  相似文献   

7.
This study describes effects of aflatoxin B1-induced hepatomas on RNA metabolism in rats. At 4 and 24 hours after the administration of L-(14CH3)-methionine, tRNA was isolated from the livers and hydrolyzed enzymatically to nucleosides which were quantitatively measured by HPLC. Radioactivity of the nucleosides was also determined. The data indicate that although tRNA methylation may be more rapid in livers with hepatomas, catabolism of tRNA in tumorous tissue is slower than in control livers. The large increase in some radioactive methylated nucleosides and bases by the tumor-bearing rats during the 24-hour period following the administration of labeled methionine indicates increased turnover of mRNA and rRNA as well as tRNA. Since degradation of tumor tRNA appears to be delayed, the excessive amounts of the urinary methylated nucleosides must be derived from RNA in nonneoplastic tissue.  相似文献   

8.
Cyclosporin A and its homologues are synthesized by a single multifunctional enzyme from their precursor amino acids. Cyclosporin synthetase is a polypeptide chain with a molecular mass of approximately 800 kDa. In 3% polyacrylamide-sodium dodecyl sulfate gels it shows a single band of approximately 650 kDa, which appears to not be glycosylated. The enzyme could be purified to near-homogeneity in five steps. A 72-fold purification was obtained. All constitutive amino acids of cyclosporins are activated as thioesters via aminoadenylation by the same enzyme. Then N-methylation of the thioester-bound amino acids which are present in methylated form in the cyclosporin molecule takes place, whereby S-adenosyl-L-methionine serves as the methyl group donor. Methyltransferase activity is an integral entity of the enzyme; this could be shown by a photoaffinity labeling method. 4'-Phosphopantetheine is a prosthetic group of cyclosporin synthetase similar to other peptide and depsipeptide synthetases. Cyclosporin synthetase shows cross-reactions with monoclonal antibodies directed against enniatin synthetase.  相似文献   

9.
Infective larvae of Angiostrongylus cantonensis may take up and incorporate exogenous arachidonic acid into their lipid pool. By scintillation counting, uptake and incorporation were determined to be time dependent. Arachidonic acid was mainly incorporated into phospholipid (56.8%) and neutral lipid (22.4%) pools. In the neutral lipids, 64.0% was diglyceride and 36.0% triglyceride. Phosphatidylcholine was the predominant fatty acid in the phospholipid pool. In addition to the release of leukotriene B4, the parasite was found to generate radiolabelled CO2 after incubation with [U-14C]arachidonate. Moreover, enzymatic analysis of crude extracts revealed the presence of acyl-CoA dehydrogenase (short and long chain), thiolase, enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. These findings suggest that infective larvae of A. cantonensis not only take up and incorporate exogenous arachidonic acid into their lipid pool, but may also utilize the fatty acid through a functional β-oxidation pathway.  相似文献   

10.
CO dehydrogenase, a key enzyme of the acetyl-CoA pathway of autotrophic growth, has been methylated using 14CH3I or 14CH3-corrinoid enzyme plus ferredoxin. Acetyl-CoA was synthesized from the resulting 14CH3-CO dehydrogenase, CO, and CoASH, with about 50% yield of the available 14C and without addition of other enzymes except CO dehydrogenase disulfide reductase. Even the reductase could be replaced by dithioerythritol. Amino acid analysis of the 14CH3-CO dehydrogenase showed two radioactive peaks, one of which migrated as S-methylcysteine but very close to the methyl ester of glutamic acid. By oxidation with H2O2, the radioactive component of this peak was identified as S-methylcysteine sulfone. Amino acid analysis of the 14CH3-CO dehydrogenase after synthesis of acetyl-CoA demonstrated that there was a large decrease in radioactivity of the peak containing the S-methyl-cysteine. The compound present in the second peak has not been identified; there was no decrease in its radioactivity. By nonreducing gel electrophoresis of the 14CH3-CO dehydrogenase, followed by autoradiography, it was shown that the beta subunit is the methyl acceptor. These results demonstrate that a cysteine of the beta subunit is the methyl acceptor and that CO dehydrogenase per se catalyzes the synthesis of acetyl-CoA.  相似文献   

11.
To clarify the allotypic difference of the IgE antibody molecule, we determined the complete nucleotide sequence of the genes encoding the constant portion of mouse IgE of a (BALB/c) as well as b (B10.A) allotypes. A comparison of the sequences revealed that there were 12 single-base changes: 2 single-base changes in CH1 and CH2, 3 in CH3, and 7 in CH4. Five of them were silent changes, but seven resulted in amino acid substitutions. Although the silent changes are scattered through CH1 to CH4, the nonsilent substitutions were found only in CH3 (two substitutions) and CH4 (five). The allotypic determinant(s) that conventional antisera detect most likely reflects an amino acid difference(s) in CH3 and/or CH4.  相似文献   

12.
Ammonium and methylammonium transport in Rhodobacter sphaeroides.   总被引:2,自引:2,他引:0       下载免费PDF全文
Rhodobacter sphaeroides maintained intracellular ammonium pools of 1.1 to 2.6 mM during growth in several fixed nitrogen sources as well as during diazotrophic growth. Addition of 0.15 mM NH4+ to washed, nitrogen-free cell suspensions was followed by linear uptake of NH4+ from the medium and transient formation of intracellular pools of 0.9 to 1.5 mM NH4+. Transport of NH4+ was shown to be independent of assimilation by glutamine synthetase because intracellular pools of over 1 mM represented NH4+ concentration gradients of at least 100-fold across the cytoplasmic membrane. Ammonium pools of over 1 mM were also found in non-growing cell suspensions in nitrogen-free medium after glutamine synthetase was inhibited with methionine sulfoximine. In NH4+-free cell suspensions, methylammonium (14CH3NH3+) was taken up rapidly, and intracellular concentrations of 0.4 to 0.5 mM were maintained. The 14CH3NH3+ pool was not affected by methionine sulfoximine. Unlike NH4+ uptake, 14CH3NH3+ uptake in nitrogen-free cell suspensions was repressed by growth in NH4+. These results suggest that R. sphaeroides may produce an NH4+-specific transport system in addition to the NH4+/14CH3NH3+ transporter. This second transporter is able to produce normal-size NH4+ pools but has very little affinity for 14CH3NH3+ and is not repressed by growth in high concentrations of NH4+.  相似文献   

13.
Changes in the endogenous intracellular amino acid pool and total free amino acid production in Bacillus licheniformis grown in minimal media were investigated. The total intracellular pool increased during exponential growth and then decreased rapidly after the end of growth. Most of the amino acids were present at low concentrations, but glutamate and alanine comprised 60 to 90% of the total intracellular free amino acid at most times during the growth cycle. It was concluded that, in addition to providing monomers for protein synthesis, the intracellular amino acid pool may be maintained for the storage of energy-providing metabolic intermediates and possibly as a balance to the ionic strength of the medium. The total free amino acid production by the cell was found to be dependent upon the composition of the salts medium as well as the culture age under conditions in which the carbon and nitrogen sources were the same. A 10-fold increase in extracellular amino acid was observed as the cells changed from vegetative to sporulation metabolism, mostly due to the extrusion of intracellular amino acid. The impact of this increase upon amino acid uptake and pulse-labeling studies using unwashed cells is discussed.  相似文献   

14.
Sediment samples, containing mixed microbial populations that were decompressed during retrieval from 7,750 and 8,130 m in the Puerto Rican Trench, were recompressed and incubated at the approximate in situ temperature (3 C) and pressure (775 or 815 atm) in the presence of 14C-labeled amino acids. Heterotrophic activity (total uptake, CO2 respiration, and cellular assimilation) and cellular-associated "pool" concentrations were measured. Compared with atmospheric controls held at 3 C, the total uptake at elevated pressure at 3 C was reduced, on an average, 55 times, CO2 respiration was reduced 45 times, and cellular assimilation was reduced 69 times. Rate of total uptake at elevated pressure was found to range from 4.0 X 10(-11) mug/cell per h for leucine to 2.61 X 10(-10) mug/cell per h for an amino acid mixture. Also, the percentage of total uptake at elevated pressures, respired as CO2, increased at the expense of cellular assimilation (ca. 22% increase). Two cellular-associated amino acid pools were detected, a large, loosely bound, outer pool and a small, tightly bound internal pool. The loosely bound outer pool was removed by a change in the pH of the incubation medium. Even though heterotrophic uptake and the outer, cellular-associated pool were markedly reduced at an elevated pressure, the percentage of total uptake calculated for the unincorporated, tightly bound, intracellular pool was 2 to 19 times that obtained for cultures held at 1 atm. The results were interpreted as indicating that bacterial metabolism and biosynthesis in the deep sea are markedly reduced, with a greater proportion of metabolic activity devoted to cellular maintenance.  相似文献   

15.
Saturation and Utilization of Nitrate Pools in Pea and Sugar Beet Leaves   总被引:1,自引:0,他引:1  
The critical periods in the saturation of pea and sugar beet leaves with nitrate absorbed by roots were discriminated. In peas, during the first 14 h, all nitrate penetrating leaf cells was concentrated in the cytosol (metabolic pool). During the second period (14–62 h), nitrate began to flow into the vacuole (storage pool), and the filling of the metabolic pool continued. Metabolic pool was saturated by the end of this period (62 h). During the third period (62–110 h), further nitrate accumulation in the cell occurred because of expanding of the storage pool. Its saturation (similarly as total cell saturation) commenced 86 h after the start of nitrate uptake. In sugar beet leaves, both metabolic and storage nitrate pools were saturated by the end of the first period (14 h), and the sizes of these pools did not change during the second period (14–86 h). When pea plants were transferred to the nitrate-free medium, nitrate efflux began from the storage pool until its complete exhausting after 3 days. In sugar beet leaves, nitrate was still present in the storage pool 4 days after plant transfer to the nitrate-free medium. In both crops, nitrate export from the storage pool was aimed at the maintenance of the optimum nitrate concentration in the metabolic pool and, thus, at the maintenance of nitrate reductase activity. A functional diversity of nitrate compartmentation in the cells of various plant species is discussed.  相似文献   

16.
Significant disorders of liver metabolic pathways enzymes after high-cholesterol diet could give information on liver steatosis development. This process could probably also be inhibited by some compounds, as examined in rabbits. Forty-two male rabbits were served a high-cholesterol diet (2 g%) (0.67 g/kg b.m./24 h) with addition of d,l-methionine (70 mg/kg b.m./24 h) or seleno-d,l-methionine (12.5 μg/kg b.m./24 h) or α-tocopherol (10 mg/kg b.m./24 h) for 3 months to compare the protection effect of used compounds on liver metabolism and steatosis. At the beginning and every month, blood was taken. After the experiment was completed, livers were dissected for histological examinations. The concentration of total cholesterol (t-CH), triacylglycerol (TG), and the activities of aldolase (ALD), sorbitol dehydrogenase (SDH), glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were determined. Plasma t-CH and TG concentrations were significantly higher in all experimental groups vs control group. Blood serum AST and ALT activities did not undergo change but there were observed not significant increase in the CH group vs control group. Activities of SDH, GLDH, and LDH increased in blood serum and decreased in the liver in all experimental groups. Activities of LDH and SDH increased in the liver in the CH+Met group vs CH group. ALD activity decreased in the liver only in the CH and CH+Se groups. This data support a lipotoxic model of cholesterol-mediated hepatic steatosis. Prolonged administration of high-cholesterol diet not only disturbs the structure of cell membranes, which is expressed by decreased activity of enzymes in the liver and the migration of those enzymes to plasma but as well leads to steatosis of the liver, which has been confirmed by histological examinations. The applied compounds appear to have a varying influence upon the activity of enzymes determined in serum and liver. Obtained results showed a beneficial influence of methionine and vitamin E supplementation on liver steatosis development.  相似文献   

17.
We investigated whether the higher rate of amino acid incorporation into immature than into mature brain protein is due to (a) rapid growth, (b) a small rapidly metabolized protein pool, or (c) a higher turnover rate of most of the protein. We measured net growth and the incorporation of [14C]tyrosine or [14C]valine into brain proteins in young rats and mice. The specific activity of the free amino acid pool was kept constant in the tyrosine experiments. Incorporation of tyrosine into protein was continued for up to 30 h by which time the specific activity of protein-bound amino acid reached 1/3 of that of the free (precursor) amino acid. The growth (accretion) of brain proteins was approx. 0.635% per h in mice and rats in the 1-4 day period after birth. In previous studies we found that the turnover rate of the bulk (about 96%) of adult brain proteins is below 0.3% per h. Because of the presence of a small (about 4%) active pool the average turnover rate is 0.6% per h. The present experiments show a degradation rate of 0.7-1.1% per h in the brain proteins of the young. This high metabolic rate is not due to a small rapidly degraded fraction of protein. The very rapid protein fraction previously seen in adult rats is either very small (below 1%) or absent in the young. Thus most of the proteins in the immature brain during the rapid growth phase are formed and broken down at a rate that is approximately three times higher than that of the bulk of proteins in the adult brain. The small active protein pool in the adult on the other hand has a metabolic rate higher than that of the immature brain proteins.  相似文献   

18.
Twenty‐seven preharvest maize ears affected by Fusarium poae rot (disease score 36–100%) were selected in 1998 and 1999 in Poland and examined for the occurrence of toxic hexadepsipeptides: beauvericin (BEA), enniatin A, enniatin B and enniatin B1. The identification of F. poae was confirmed by sequence analysis of variable internal transcribed spacer regions and compared with NCBI gene bank DNA sequences. Chemical analyses were performed by HPLC‐MS. In 27 ears infected by F. poae were detected: BEA (trace to 46 μg/g) in 18 samples, enniatin A (trace to 37 μg/g) in nine samples, enniatin B (trace to 47 μg/g) in 15 samples and enniatin B1 (trace to 25 μg/g) in 12 samples. When 20 strains of F. poae isolated from these samples were cultured on rice, all produced BEA (1.9–75 μg/g), three enniatin A (1.8–2 μg/g), 12 enniatin B (1.1–5.1 μg/g) and eight enniatin B1 (1.2–5.2 μg/g). Occurrence and quantification of enniatin A, enniatin B and enniatin B1 and their co‐occurrence with BEA in maize kernels is reported for the first time.  相似文献   

19.
Endonuclease V, a pyrimidine dimer-specific DNA repair enzyme, was chemically modified by reductive methylation, a technique that specifically methylates primary amino groups. Upon reaction of endonuclease V with [14C]formaldehyde (14CH2O) in the presence of the reducing agent sodium cyanoborohydride (Na-CNBH3), it was discovered that 0.8 methylation/endonuclease V molecule was required to reduce both the glycosylase and the phosphodiester lyase activities by 70-80%. Pyrimidine dimer-specific binding was not eradicated at a level of methylation equivalent to 0.8 CH3/endonuclease V molecule but was eradicated at higher levels of methylation. Endonuclease V that had been modified with an average of 1.6 CH3/molecule was digested with Staphylococcus aureus strain V8 protease and the peptides subsequently separated by reverse-phase high performance liquid chromatography. Radiolabel was found exclusively on the peptide including the amino terminus, as determined by the percent amino acid composition. Neither intact CH3-endonuclease V nor radiolabeled peptides were able to be sequenced by Edman degradation indicating blockage of the amino terminus by methylation. This study shows strong evidence for the unusual involvement of the alpha NH2 moiety in the chemical mechanisms of endonuclease V. A reaction mechanism that incorporates these findings is presented.  相似文献   

20.
Two depsipeptide metabolites, scyptolin A and B, were reported recently from the axenically grown terrestrial cyanobacterium Scytonema hofmanni PCC 7110. A related, novel depsipeptide was isolated from this Scytonema and designated hofmannolin. The amino acid analysis in context with infrared, mass and 1H/13C-NMR spectroscopies revealed a cyclic depsipeptide structure of M(r) 1073 belonging to the class of cyanopeptolins. Two peculiar features distinguish hofmannolin from other cyanopeptolins: O-methylated tyrosine forms the sixth moiety from the amino terminus, and the N-terminus is blocked by 2-hydroxy-3-methyl-valeric acid, a residue that has not yet been reported as a component in other cyanopeptolins. Preliminary assays of peptidase inhibitory and antimicrobial activities suggested negligible bioactivities for hofmannolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号