首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second half of the photocycle of the light-driven proton pump bacteriorhodopsin includes proton transfers between D96 and the retinal Schiff base (the M to N reaction) and between the cytoplasmic surface and D96 (decay of the N intermediate). The inhibitory effects of decreased water activity and increased hydrostatic pressure have suggested that a conformational change resulting in greater hydration of the cytoplasmic region is required for proton transfer from D96 to the Schiff base, and have raised the possibility that the reversal of this process might be required for the subsequent reprotonation of D96 from the cytoplasmic surface. Tilt of the cytoplasmic end of helix F has been suggested by electron diffraction of the M intermediate. Introduction of bulky groups, such as various maleimide labels, to engineered cysteines at the cytoplasmic ends of helices A, B, C, E, and G produce only minor perturbation of the decays of M and N, but major changes in these reactions when the label is linked to helix F. In these samples the reprotonation of the Schiff base is accelerated and the reprotonation of D96 is strongly retarded. Cross-linking with benzophenone introduced at this location, but not at the others, causes the opposite change: the reprotonation of the Schiff base is greatly slowed while the reprotonation of D96 is accelerated. We conclude that, consistent with the structure from diffraction, the proton transfers in the second half of the photocycle are facilitated by motion of the cytoplasmic end of helix F, first away from the center of the protein and then back.  相似文献   

2.
Dioumaev AK  Lanyi JK 《Biochemistry》2008,47(42):11125-11133
Below 195 K, the bacteriorhodopsin photocycle could not be adequately described with exponential kinetics [Dioumaev, A. K., and Lanyi, J. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 9621-9626] but required distributed kinetics, previously found in hemoglobin and myoglobin at temperatures below the vitrification point of the surrounding solvent. The aim of this study is to determine which factors cause the switch from this low-temperature regime to the conventional kinetics observed at ambient temperature. The photocycle was monitored by time-resolved FTIR between 180 and 280 K, using the D96N mutant. Depending on the temperature, decay and temporal redistribution of two or three intermediates (L, M, and N) were observed. Above approximately 245 K, an abrupt change in the kinetic behavior of the photocycle takes place. It does not affect the intermediates present but greatly accelerates their decay. Below approximately 240 K, a kinetic pattern with partial decay that cannot be explained by conventional kinetics, but suggesting distributed kinetics, was dominant, while above approximately 250 K, there were no significant deviations from exponential behavior. The approximately 245 K critical point is >/=10 K below the freezing point of interbilayer water, and we were unable to correlate it with any FTIR-detectable transition of the lipids. Therefore, we attribute the change from distributed to conventional kinetics to a thermodynamic phase transition in the protein. Most probably, it is related to the freezing and thawing of internal fluctuations of the protein, known as the dynamic phase transition, although in bacteriorhodopsin the latter is usually believed to take place at least 15 K below the observed critical temperature of approximately 245 K.  相似文献   

3.
K Bryl  G Varo  R Drabent 《FEBS letters》1991,285(1):66-70
The kinetics of photoelectric and optical signals were measured on samples containing oriented purple membranes immobilized in a poly(vinyl alcohol) film and on purple membranes introduced into a PVA-H2O mixture. The bacteriorhodopsin photocycle in the PVA-H2O mixture was complete. The only observed changes were the slowing down of the optical and electrical signals in relation to the M412-O640 and O640-bRall-trans steps. In the PVA film the O640 intermediate disappeared and a negative photoelectric signal appeared.  相似文献   

4.
A variety of neutron, X-ray and electron diffraction experiments have established that the transmembrane regions of bacteriorhodopsin undergo significant light-induced changes in conformation during the course of the photocycle. A recent comprehensive electron crystallographic analysis of light-driven structural changes in wild-type bacteriorhodopsin and a number of mutants has established that a single, large protein conformational change occurs within 1 ms after illumination, roughly coincident with the time scale of formation of the M(2) intermediate in the photocycle of wild-type bacteriorhodopsin. Minor differences in structural changes that are observed in mutants that display long-lived M(2), N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. These observations support a model for the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M(1)) are well approximated by one protein conformation in which the Schiff base has extracellular accessibility, while the structures of the later intermediates (M(2), N and O) are well approximated by the other protein conformation in which the Schiff base has cytoplasmic accessibility.  相似文献   

5.
The quantum efficiency of the bacteriorhodopsin photocycle.   总被引:5,自引:3,他引:2       下载免费PDF全文
The quantum yield of the primary photoprocess in light-adapted bacteriorhodopsin (phi 1) was determined at room temperature with low-intensity 530 nm neodymium laser excitation, with bovine rhodopsin as a relative actinometer. The observed value of phi 1 - 0.25 +/- 0.05, and the previously determined parameter phi 1/phi 2 - 0.4 [where phi 2 denotes the quantum efficiency of the back photoprecess from the primary species K (590)] imply that phi 1 + phi 2 approximately equal 1. This feature, also characterizing the photochemistry of rhodopsin, bears on the nature and mechanism of the primary event in both systems.  相似文献   

6.
A general behavior of bacteriorhodopsin in purple membranes from Halobacterium halobium has been observed upon modification resulting in cross-linking of carboxyl and lysine groups. The rise of the M-intermediate contained two components with approximately 50-50% intensity; its decay showed three components with approximately 25-50-25% intensity respectively in a pH range of 5-9. The significance of these remarkably similar data with respect to the proton translocation mechanism in bacteriorhodopsin is that chemical modification allows us to conclude that disturbing parts of the hypothetical "proton conducting chain" does not inhibit proton translocation.  相似文献   

7.
The dependence of the bacteriorhodopsin (bR) photocycle on the intensity of the exciting flash was investigated in purple membranes. The dependence was most pronounced at slightly alkaline pH values. A comparison study of the kinetics of the photocycle and proton uptake at different intensities of the flash suggested that there exist two parallel photocycles in purple membranes at a high intensity of the flash. The photocycle of excited bR in a trimer with the two other bR molecules nonexcited is characterized by an almost irreversible M --> N transition. Excitation of two or three bR in a trimer induces the N --> M back reaction and accelerates the N --> bR transition. Based on the qualitative similarity of the pH dependencies of the photocycles of solubilized bR and excited dimers and trimers we proposed that the interaction of nonexcited bR in trimers alters the photocycle of the excited monomer as compared to solubilized bR and the changes in the photocycles in excited dimers and trimers are the result of decoupling of this interaction.  相似文献   

8.
The photoconversion of bacteriorhodopsin and the effects of an applied electric field (5 · 107 V · m?1) were studied in dry films of purple membranes from Halobacterium halobium. The electric field was found to cause at least two different effects: (1) it blocks in part the formation of the batho-bacteriorhodopsin (K), most probably due to electrically-induced dark transition of some bacteriorhodopsin molecules into the photochemically inactive form; (2) it decreases the rate of the intermediate M decay, the rise time of the M formation being unaffected by electric field. The observed phenomena may suggest a feedback control mechanism for the regulation of the bacteriorhodopsin photocycle in purple membranes.  相似文献   

9.
The effects of pH on the yield (phi(r)), and on the apparent rise and decay constants (k(r), k(d)), of the O(630) intermediate are important features of the bacteriorhodopsin (bR) photocycle. The effects are associated with three titration-like transitions: 1) A drop in k(r), k(d), and phi(r) at high pH [pK(a)(1) approximately 8]; 2) A rise in phi(r) at low pH [pK(a)(2) approximately 4.5]; and 3) A drop in k(r) and k(d) at low pH [pK(a)(3) approximately 4. 5]. (pK(a) values are for native bR in 100 mM NaCl). Clarification of these effects is approached by studying the pH dependence of phi(r), k(r), and k(d) in native and acetylated bR, and in its D96N and R82Q mutants. The D96N experiments were carried out in the presence of small amounts of the weak acids, azide, nitrite, and thiocyanate. Analysis of the mutant's data leads to the identification of the protein residue (R(1)) whose state of protonation controls the magnitude of phi(r), k(r), and k(d) at high pH, as Asp-96. Acetylation of bR modifies the Lys-129 residue, which is known to affect the pK(a) of the group (XH), which releases the proton to the membrane exterior during the photocycle. The effects of acetylation on the O(630) parameters reveal that the low-pH titrations should be ascribed to two additional protein residues R(2) and R(3). R(2) affects the rise of phi(r) at low pH, whereas the state of protonation of R(3) affects both k(r) and k(d). Our data confirm a previous suggestion that R(3) should be identified as the proton release moiety (XH). A clear identification of R(2), including its possible identity with R(3), remains open.  相似文献   

10.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   

11.
Sensory rhodopsin-I (SRI), a phototaxis receptor of archaebacteria, is a retinal-binding protein that exists in the cell membrane intimately associated with a signal-transducing protein (HtrI) homologous to eubacterial chemotaxis receptors. Transducer-free sensory rhodopsin-I (fSRI), from cells devoid of HtrI, undergoes a photochemical cycle kinetically different from that of native SRI. We report here on the measurement and analysis of the photochemical kinetics of fSRI reactions in the 350-750-nm spectral range and in a 10(-7) s to 1 s time window. The lack of specific intermolecular interactions between SRI and HtrI results in early return of the ground form via distinct branching reactions in fSRI, not evident in the photocycle of native SRI. The chromophore transitions are loosely coupled to protein structural transitions. The coexistence of multiple spectral forms within kinetic intermediates is interpreted within the concept of multicolored protein conformational states.  相似文献   

12.
The effects of excitation light intensity on the kinetics of the bacteriorhodopsin photocycle were investigated. The earlier reported intensity-dependent changes at 410 and 570 nm are explained by parallel increases in two of the rate constants, for proton transfers to D96 from the Schiff base and from the cytoplasmic surface, without changes in the others, as the photoexcited fraction is increased. Thus, it appears that the pKa of D96 is raised by a cooperative effect within the purple membrane. This interpretation of the wild-type kinetics was confirmed by results with several mutant proteins, where the rates are well separated in time and a model-dependent analysis is unnecessary. Based on earlier results that demonstrated a structural change of the protein after deprotonation of the Schiff base that increases the area of the cytoplasmic surface, and the effects of high hydrostatic pressure and lowered water activity on the photocycle steps in question, we suggest that the pKa of D96 is raised by a lateral pressure that develops when other bacteriorhodopsin molecules are photoexcited within the two-dimensional lattice of the purple membrane. Expulsion of no more than a few water molecules bound near D96 by this pressure would account for the calculated increase of 0.6 units in the pKa.  相似文献   

13.
《BBA》1986,850(1):162-169
Oriented purple-membrane preparations from Halobacterium halobium were obtained by electrophoretic sedimentation of a purple-membrane suspension on a transparent current-conducting surface. Light exposure of orderly oriented purple-membrane films causes the generation of a photopotential amounting to several volts. The effects of external electric field on the dark state and photocycle of bacteriorhodopsin is studied in dry orderly oriented purple-membrane films. In contrast to nonuniformly oriented preparations (Borisevich, G.P., Lakashev, E.P., Kononenko, A.A. and Rubin, A.B. (1979) Biochim. Biophys. Acta 546, 171–174 and Lukashev, E.P., Vozary, E., Kononenko, A.A. and Rubin, A.B. (1980) Biochim. Biophys. Acta 590, 258–266), a specific feature of the field-induced phenomena observed in orderly oriented films is their vectorial character. The field-induced bathochromic shift of the maximum absorbance of bacteriorhodopsin is observed in an electric field, directed from the periplasmatic to cytoplasmatic side of the purple membrane and the field-induced rise of the photo-stationary M412 concentration in a field of opposite sign. This field-induced rise is a result of slowering of M412 decay. The observed effects seem likely to reflect the existence of the potential-dependent regulation of the bacteriorhodopsin photocycle in intact purple membranes.  相似文献   

14.
Time-resolved difference spectra have been obtained for the photocycle of delipidated bacteriorhodopsin monomers (d-BR) in six different detergent micelle environments that were prepared by two new detergent-exchange techniques. A global kinetic analysis of the photocycle spectra for d-BR in each detergent environment was performed. Comparison of these results with those obtained for the photocycle of bacteriorhodopsin in purple membrane (PM) shows that there is one fewer kinetically distinguishable process for monomeric BR between the decay of the K intermediate and the rise of the M intermediate. Assuming a sequential pathway occurs in the photocycle, it appears that the equilibrium between the L and M intermediates is reached much more rapidly in the detergent micelles. This is attributed to a more direct interaction between Asp-85 and the proton on the nitrogen of the Schiff base of retinal for BR in the detergents. Equilibrium concentrations of late photocycle intermediates are also altered in detergents. The later steps of the photocycle, including the decay of the M intermediate, are slowed in detergents with rings in their hydrocarbon region. This is attributed to effects on conformational changes occurring during the decay of M and/or other later photocycle intermediates. The lifetime of dark adaptation of light-adapted d-BR in different detergent environments increases in environments where the lifetime of the M intermediate increases. These results suggest that the high percentage of either unsaturated or methyl-branched lipids in PM and the membranes of other retinal proteins may be important for their effective functioning.  相似文献   

15.
Maximum of the M intermediate difference spectrum in the wild-type Halobacterium salinarium purple membrane is localized at 405-406 nm under conditions favoring accumulation of the M(N) intermediate (6 M guanidine chloride, pH 9.6), whereas immediately after laser flash the maximum is localized at 412 nm. The maximum is also localized at 412 nm 0.1 msec after the flash in the absence of guanidine chloride at pH 11.3. Within several milliseconds the maximum is shifted to short-wavelength region by 5-6 nm. This shift is similar to that in the D96N mutant which accompanies the M(N) (M(open)) intermediate formation. The main two differences are: 1) the rate of the shift is slower in the wild-type bacteriorhodopsin, and is similar to the rate of the M to N intermediate transition (t1/2 approximately 2 msec); 2) the shift in the wild-type bacteriorhodopsin is observed at alkaline pH values which are higher than pK of the Schiff base (approximately 10.8 at 1 M NaCl) in the N intermediate with the deprotonated Asp-96. Thus, the M(N) (M(open)) intermediate with open water-permeable inward proton channel is observed only at high pH, when the Schiff base and Asp-96 are deprotonated. The data confirmed our earlier conclusion that the M intermediate observed at lower pH has the closed inward proton channel.  相似文献   

16.
Hendler RW  Shrager RI  Meuse CW 《Biochemistry》2008,47(19):5406-5416
In 1995, evidence both for photocooperativity and for heterogeneity as possible explanations for the ability of actinic light to modify the kinetics and pathways of the bacteriorhodopsin (BR) photocycle was reviewed ( Shrager, R. I., Hendler, R. W., and Bose, S. (1995) Eur. J. Biochem. 229, 589-595 ). Because both concepts could be successfully modeled to experimental data and there was suggestive published evidence for both, it was concluded that both photocooperativity and heterogeneity may be involved in the adaptation of the BR photocycle to different levels of actinic light. Since that time, more information has become available and it seemed appropriate to revisit the original question. In addition to the traditional models based on all intermediates in strict linear sequences, we have considered both homogeneous and heterogeneous models with branches. It is concluded that an explanation based on heterogeneity is more likely to be the true basis for the variation of the properties of the photocycle caused by changes in actinic light intensity. On the basis of new information presented here, it seems that a heterogeneous branched model is more likely than one with separate linear sequences.  相似文献   

17.
Bacteriorhodopsin in the purple membrane of Halobacterium halobium is coupled to a photocycle that results in the release and uptake of protons. The role of tyrosyl residues in the photocycle of bacteriorhodopsin has been investigated by the technique of chemical modifications of these residues by iodination and nitration. The studies indicate that modification of a tyrosyl residue accelerates M412 formation, whereas modification of another type of tyrosine residue(s) accessible from the cytoplasmic surface of the purple membrane inhibits M412 decay. The results support the hypothesis that a reversible deprotonation of tyrosine residues prior to and after M412 formation in the photocycle are steps in the light-driven pathway of H+ translocation by bacteriorhodopsin.  相似文献   

18.
Purple membrane fragments of Halobacterium halobium were used to investigate pH and salt effects on the kinetics of M 412, O 660 and BR 568. The flash-induced absorbance changes were measured in the 5–9 pH range, at low ionic strength and at 4 M NaCl. The results are consistent with a model which implies a branching in the last part of the bacteriorhodopsin photocycle.  相似文献   

19.
The techniques of FTIR difference spectroscopy and site-directed mutagenesis have been combined to investigate the role of individual tyrosine side chains in the proton-pumping mechanism of bacteriorhodopsin (bR). For each of the 11 possible bR mutants containing a single Tyr----Phe substitution, difference spectra have been obtained for the bR----K and bR----M photoreactions. Only the Tyr-185----Phe mutation results in the disappearance of a set of bands that were previously shown to be due to the protonation of a tyrosinate during the bR----K photoreaction [Rothschild et al.: Proceedings of the National Academy of Sciences of the United States of America 83:347, (1986]). The Tyr-185----Phe mutation also eliminates a set of bands in the bR----M difference spectrum associated with deprotonation of a Tyr; most of these bands (e.g., positive 1272-cm-1 peak) are completely unaffected by the other ten Tyr----Phe mutations. Thus, tyrosinate-185 gains a proton during the bR----K reaction and loses it again when M is formed. Our FTIR spectra also provide evidence that Tyr-185 interacts with the protonated Schiff base linkage of the retinal chromophore, since the negative C = NH+ stretch band shifts from 1640 cm-1 in the wild type to 1636 cm-1 in the Tyr-185----Phe mutant. A model that is consistent with these results is that Tyr-185 is normally ionized and serves as a counter-ion to the protonated Schiff base. The primary photoisomerization of the chromophore translocates the Schiff base away from Tyr-185, which raises the pKa of the latter group and results in its protonation.  相似文献   

20.
《FEBS letters》1986,202(2):356-360
The possibility that light-induced protein conformational changes accompany the formation of the M412 species in the bacteriorhodopsin photocycle is investigated by polarized Fourier transform infrared (FTIR) spectroscopy on oriented films of purple membrane. From the light-induced FTIR dichroism changes, it is estimated that: (i) the CO stretching vibration at 1762 cm−1, which has been assigned to a protonated Asp carboxyl group in M412 [(1985) Biochemistry 24, 400-407], is oriented at (θ = 35 ± 5° from the normal to the membrane plane; (ii) the limit for the change in the average tilt angle of the α-helices after photoconversion is less than 2°. The latter observation excludes the large variations in the protein conformation during the M412 formation proposed by Draheim and Cassim [(1985) Biophys. J. 47, 497-507].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号