首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study we seek to elucidate the mechanism of hormone-independent adenylate cyclase stimulation by Gpp(NH)p in chicken erythrocyte membranes, and the inhibition of this stimulation by propranolol. Membrane treatment with isoprenaline + GMP increased Gpp(NH)p stimulation to near maximal levels [obtainable with isoprenaline + Gpp(NH)p], but reduced stimulation by NaF. The stimulation by Gpp(NH)p was stereoselectively inhibited by propranolol, but not by equal concentrations of the local anaesthetic lignocaine. Propranolol's inhibitory action was abolished following membrane treatment with isoprenaline/GMP. In contrast to its inhibition of Gpp(NH)p stimulation, propranolol did not alter Gpp(NH)p-mediated 3H-GDP release from membranes. The polyene antibiotic filipin, which uncouples receptor (R) from Gs, also abolished Gpp(NH)p stimulation and this effect was partly overcome by membrane treatment. These results are consistent with a model in which free R exists in equilibrium with precoupled R.Gs complexes in the absence of hormone. These complexes are activated by Gpp(NH)p and dissociated by antagonists. The existence of such complexes is a prerequisite for Gpp(NH)p stimulatory action.  相似文献   

3.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

4.
The ability of 5'-guanylylimidodiphosphate (Gpp(NH)p) to stimulate irreversibly the adenylate cyclease activity of fat cell membranes has been studied by preincubating the membranes with this or related analogs followed by assaying after thoroughly washing the membranes. Activation can occur in a simple Tris-HCl buffer, in the absence of added divalent cations and in the presence of EDTA. Dithiothreitol enhances the apparent degree of activation, perhaps by stabilization. The importance of utilizing optimal conditions for stabilizing enzyme activity, and of measuring the simultaneous changes in the control enzyme, is illustrated. The organomercurial, p-aminophenylmercuric acetate, inhibits profoundly the activity of the native as well as the Gpp(NH)p-stimulated adenylate cyclase, but in both cases subsequent exposure to dithiothreitol restores fully the original enzyme activity. However, the mercurial-inactivated enzyme does not react with Gpp(NP)p, as evidenced by the subsequent restoration of only the control enzyme activity upon exposure to dithiothreitol. Thus, reaction with Gpp(NH)p requires intact sulfhydryl groups, but the activated state is not irreversibly destroyed by the inactivation caused by sulfhydryl blockade. GTP and, less effectively, GDP and ATP inhibit activation by Gpp(NH)p, but interpretations are complicated by the facts that this inhibition is overcome with time and that GTP and ATP can protect potently from spontaneous inactivation. These two nucleotides can be used in the Gpp(NH)p preincubation to stabilize the enzyme. The Gpp(NH)p-activated enzyme cannot be reversed spontaneously during prolonged incubation at 30 degrees C in the absence or presence of GTP, ATP, MgCl2, glycine, dithiothreitol, NaF or EDTA. The strong nucleophile, neutral hydroxylamine, decreases the Gpp(NH)p-activated enzyme activity and no subsequent activation is detected upon re-exposure to the nucleotide.  相似文献   

5.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

6.
We have described relationships involving forskolin stimulation of adenylate cyclase (AC) from a variety of sources and the potentiation of forskolin effects by stimulatory hormones (glucagon, ACTH, and epinephrine) and beta, gamma-imidoguanosine 5'-triphosphate (Gpp(NH)p). The effects on AC were examined using membrane preparations of rabbit adipocytes, rat adipocytes, rat erythrocytes, and rat liver. Also examined was the AC of liver membranes of rat pretreated with pertussis toxin as well as that solubilized from rat liver membranes. Maximal forskolin stimulation of AC in all preparations studied revealed a consistent 10-fold increase in AC activity. The EC50 for forskolin was 10 microM for rat liver, 15 microM for rabbit and rat adipocytes and 17 microM for rat erythrocyte AC stimulation. In all cases the AC activity attained by forskolin stimulation was further enhanced by stimulatory hormones in a dose-dependent manner. Furthermore, a combination of all three activators (forskolin, stimulatory hormone, and Gpp(NH)p) resulted in an even greater overall stimulation to levels ranging from 25- to 30-fold over unstimulated activity levels. In the presence of saturating levels of each stimulatory hormone and Gpp(NH)p, the EC50 for forskolin diminished markedly to the range of 0.5 to 4.0 microM. In the absence of any apparent tissue specificity for forskolin stimulation, the general pattern of these results further implicates the catalytic site of the AC complex as the site of forskolin activation. Furthermore, activation of additional components of the complex by Gpp(NH)p and tissue specific hormones may further influence the AC activity and thereby potentiate the stimulation by forskolin.  相似文献   

7.
Isoproterenol plus guanylyl imidodiphosphate (Gpp(NH)p) activate frog erythrocyte adenylate cyclase to a level much higher than the sum of the activities produced by the catecholamine and the synthetic nucleotide tested separately. Propranolol, the beta-receptor blocking agent, failed to inhibit activity when added after the enzyme system had been preincubated with both isoproterenol and Gpp(NH)p. However, if propranolol was added after only one of the two components had been added, it inhibited the effect of isoproterenol. Production of the propranolol-resistant state by treatment with isoproterenol and Gpp(NH)p did not require the presence of the productive substrate (MgATP). The activated propranolol-resistant state persisted following various treatments of the enzyme preparation including extensive washings of the membranes; considerable activity was retained even after sonication or treatment with the detergent Lubrol-PX, treatments which caused inactivation of the native enzyme. Extensive dilution of the membranes following pretreatment with isoproterenol and Gpp(NH)p did not significantly reduce to the activity of the enzyme. Readdition of isoproterenol after dilution caused some inhibition of adenylate cyclase activity, indicating apparently that the beta-receptor has not become inaccessible. In contrast, preincubation with isoproterenol alone failed to render the enzyme system refractive to propranolol, and dilution readily reduced the activity to negligibly low values. Preincubation with Gpp(NH)p alone also produced a persistent active state but the activity was much lower than that obtained throught the combined action of isoproterenol and Gpp(NH)p. The findings suggest that the hormone may be required only to facilitate the initial interaction of the enzyme with Gpp(NH)p. The differences, in this respect, between Gpp(NH)p and the more labile natural nucleotide, GTP, are discussed.  相似文献   

8.
The turkey erythrocyte beta-adrenergic receptor-adenylate cyclase system has the unusual property that neither GTP nor Gpp(NH)p are effective in activating adenylate cyclase unless a beta-agonist is present simultaneously. This property results in essentially no basal activity and the inability of GTP or Gpp(NH)p alone to activate the catalytic moiety. In this study, we have exploited these characteristics to utilize turkey erythrocyte membranes as the acceptor preparation in a reconstitution assay. Rat reticulocyte or turkey erythrocyte membranes that have been activated with isoproterenol and Gpp(NH)p followed by solubilization with sodium cholate serve as the donor source of the guanine nucleotide regulatory protein (N). By reconstituting this Gpp(NH)p-activated N protein, it has been found that: (1) exogenous Gpp(NH)p-associated N could activate the catalytic unit of adenylate cyclase in turkey erythrocyte membranes; (2) this system can be used to assay N protein activity; (3) the endogenous pathway for activation of turkey erythrocyte membrane adenylate cyclase by hormones and fluoride remains qualitatively functional; and (4) the effects of combined activation via the endogenous and exogenous pathways are additive and saturable.  相似文献   

9.
A method for preparing human platelet membranes with high adenylate cyclase activity is described. Using these membranes, epinephrine and GTP individually are noted to inhibit adenylate cyclase slightly. When present together, epinephrine and GTP act synergistically to cause a 50% inhibition of basal activity. The epinephrine effect is an alpha-adrenergic process as it is reversed by phentolamine but not propranolol. The quasi-irreversible activation of adenylate cyclase by Gpp(NH)p is time, concentration, and Mg2+-dependent but is not altered by the presence of epinephrine. Adenylate cyclase activated by Gpp(NH)p, and extensively washed to remove unbound Gpp(NH)p, is inhibited by the subsequent addition of Gpp(NH)p, GTP, and epinephrine. This effect of epinephrine is also an alpha-adrenergic phenomenon. In contrast to epinephrine which inhibits the cyclase, PGE1 addition results in enzyme stimulation. PGE1 stimulation does not require GTP addition. PGE1 accelerates the rate of Gpp(NH)p-induced activation. Low GTP concentrations (less than 1 x 10(-6) M) enhance PGE1 stimulation while higher GTP concentrations cause inhibition. These observations suggest that human platelet adenylate cyclase possesses at least two guanine nucleotide sites, one which interacts with the alpha-receptor to result in enzyme inhibition and a second guanine nucleotide site which interacts with the PGE1 receptor and causes enzyme stimulation.  相似文献   

10.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

11.
We have solubilized adenylate cyclase in a relatively stable form from rat adrenal membranes. The solubilized enzyme elutes on a column of Sepharose 4BR as a distinct peak with a higher molecular weight than the soluble fractions which bind 125I-ACTH. Both the soluble and membrane bound enzymes are activated by NaF and Gpp(NH)p, and both have similar affinities for MgATP. While the membrane bound enzyme is activated similarly by either Mg2+ or Mn2+, the soluble enzyme is more fully activated by Mn2+. Pretreatment of adrenal membranes with NaF or Gpp(NH)p before the addition of detergent enhances recovery of soluble enzyme activity, while recovery of activity in the unsolubilized membrane pellet is unchanged. In contrast, addition of ACTH prevents solubilization of the enzyme and greatly increases its recovery in the pellet. This observation is consistent with the theory that action of the hormone on a receptor subunit leads to an association between the receptor and a catalytic subunit. Such an association might make it more difficult to remove the enzyme from the surrounding lipid matrix of the membrane.  相似文献   

12.
Summary The irreversible activation of adenylate cyclase by 5 guanylylimidodiphosphate, a phosphoramidate analog of 5GTP, has been examined in toad (Bufus marinus) plasma membranes using the technique of preincubating the membranes with the nucleotide under various controlled conditions followed by washing and subsequent assay of enzyme activity. Activation of adenylate cyclase by Gpp(NH)p, but not GTP, is essentially permanent and persists following extensive washing, prolonged incubation at 30°C in the absence of the nucleotide, and after dissolution of the membranes with Lubrol PX. (–)-Isoproterenol increases the activation observed with maximal concentrations of Gpp(NH)p from eight- to 10-fold (in the absence of hormone) to 50- to 100-fold; final activities as high as 10–15 nmoles of cyclic AMP per min per mg protein are achieved. The activated state obtained with isoproterenol and Gpp(NH)p is also permanent and is not inhibited by propranolol. The synergism between Gpp(NH)p and hormone requires the simultaneous presence of these compounds, and the time-dependent enhancement of activation with (–)-isoproterenol may be interrupted by addition of propranolol.The stimulation is slow, and may proceed for as long as 45 min at 30°C in the presence of maximal concentrations of Gpp(NH)p and (–)-isoproterenol. Very little activation occurs at 0°C. The time course of activation at 30°C exhibits an accelerating phase lasting from 5 to 30 min when Gpp(NH)p is added directly during assay of cyclase activity or when the membranes are preincubated for various times and washed prior to assay for a fixed time. The lag period occurs in the presence and absence of (–)-isoproterenol, although the rate of increase in velocity is greater with hormone. The length of the accelerating phase decreases with increasing concentrations of Gpp(NH)p, although it is still evident with maximal levels of Gpp(NH)p and hormone. However, prewarming the membranes at 30°C for 10 min in the absence of Gpp(NH)p or (–)-isoproterenol results in an immediate onset of linear activation at a rate which is achieved in untreated membranes only after about 10 min. The events occurring during prewarming at 30°C are readily reversible since chilling the warmed membranes to 0°C results in a time course of activation identical to that of membranes maintained at 0°C until addition of Gpp(NH)p.Activation is proportional to the concentration of Gpp(NH)p within the range of 10–8 to 10–4 mm. The apparent affinity for Gpp(NH)p increases with increasing time of incubation. The primary effect of increasing the concentration of Gpp(NH)p is to decrease the time required to obtain a maximal rate of activation.The possible relevance of these findings to the mechanism of action of Gpp(NH)p, adenylate cyclase and hormones is discussed within the context of current views of biological membranes which recognize the lateral mobility of membrane molecules.  相似文献   

13.
A general feature of membrane-bound adenylate cyclase systems is the “lability” of the basal enzyme to dispersion by detergents. A stable form of the detergentsolubilized enzyme is obtained only if the membrane-bound enzyme is first pretreated with fluoride or Gpp(NH)p. However, we have found with the basal hepatic enzyme that the lability is evident primarily when MgATP is used as substrate; substitution of MnATP for MgATP reveals that substantial basal activity survives detergent treatment. This effect is independent of the detergent; it is seen with either Lubrol PX or with deoxycholate. In addition to the altered substrate requirement, the membrane-bound and solubilized forms of the basal enzyme exhibit other differences. In contrast to the membrane-bound form, the solubilized enzyme shows (1) weak stimulation by Gpp(NH)p; (2) little inhibition by adenosine, (3) strong inhibition by Pi or PPi, and (4) and apparent loss of the Me2+-reactive regulatory site. Such dissimilarities between membranebound and solubilized cyclase are not seen if the membranes are pretreated with Gpp(NH)p prior to exposure to detergents. The characteristics of the solubilized basal hepatic enzyme are similar to those of the naturally occurring soluble adenylate cyclase found in mature rat testes. It would appear that separation of adenylate cyclase from components that confer regulation by divalent cation and guanine nucleotides produces a form of the enzyme that will turnover only MnATP; this may represent the free catalytic moiety. Such preparations could be useful in reconstructing some of the regulatory functions of adenylate cyclase seen in its membrane-bound form.  相似文献   

14.
GTP-binding proteins have been implicated to function as key transducing elements in the mechanism underlying receptor activation of a membrane-associated phospholipase C activity. In the present study, the regulation of phospholipase C activity by GTP-binding proteins has been characterized in a detergent-solubilized system derived from bovine brain membranes. Guanosine-5'-(3-O-thio)triphosphate (GTP-gamma-S) and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) stimulated a dose-dependent increase in phospholipase C activity with half-maximal activation at 0.6 microM and 10 microM, respectively. The maximal degree of stimulation due to Gpp(NH)p or GTP-gamma-S was comparable. 100 microM GTP had only a slight stimulatory effect on phospholipase C activity. Adenine nucleotides, 100 microM adenylyl-imidodiphosphate and ATP, did not stimulate phospholipase C activity, indicating that specific guanine nucleotide-dependent regulation of phospholipase C activity was preserved in the solubilized state. Gpp(NH)p or GTP-gamma-S stimulation of phospholipase C activity was time-dependent and required Mg2+.Mg2+ regulated the time course for activation of phospholipase C by guanine nucleotides and the ability of guanine nucleotides to promote an increase in the Ca2+ sensitivity of phospholipase C. 200 microM GDP-beta-S or 5 mM EDTA rapidly reversed the activation due to GTP-gamma-S or Gpp(NH)p. These findings demonstrate that G protein regulation of phospholipase C activity in a bovine brain membrane- solubilized system occurs through a Mg2+ and time-dependent mechanism. Activation is readily reversible upon addition of excess GDP-beta-S or removal of Mg2+.  相似文献   

15.
When a special detergent-extraction procedure is applied to rat brain particulate fractions, the latter's adenylate cyclase activity becomes virtually unresponsive to NaF or Gpp (NH)p (guanylyl-5′-imidodiphosphate) despite the fact that under these conditions the enzyme does not appear to be removed (i.e., solubilized) from the membranes. Addition of exogenous fractions of detergent-solubilized membranes or of water-soluble samples of homogenates, obtained from various tissues, restores the stimulation of the enzyme by both Gpp(NH)p and NaF. These findings indicate that the stimulation caused by these agents is mediated by one or more regulatory component(s), and that these are molecular components physically distinct from the enzyme itself. The regulatory component(s) appear to be proteinaceous in nature and sensitive to SH-reactive reagents. The properties of the reconstituted system resemble those of the original particulate adenylate cyclase. This system may serve as a convenient tool for the study of the molecular properties of adenylate cyclase and of the basis of its regulatory control.  相似文献   

16.
The molecular size of adenylate cyclase solubilized from frog erythrocyte membranes by digitonin extraction has been determined by chromatography on Sepharose 6B. Regardless of whether the membranes are exposed to catecholamines, GPP(NH)P, NaF or no effector prior to solubilization, the apparent molecular size of the adenylate cyclase enzyme is the same. Furthermore, a similar elution profile for the enzyme is observed when the catalytic activity in the eluates is measured in the presence of Mn++, rather than Mg++. Since it is generally assumed that the persistent activation of adenylate cyclase by GPP(NH)P requires interaction of the catalytic moiety with the guanine nucleotide regulatory site, it appears that the adenylate cyclase activity detected in the column eluates represents an intact catalytic-regulatory site complex. The adenylate cyclase activity derived from catecholamine pretreated frog erythrocyte membranes does not co-elute with catecholamine-occupied beta-adrenergic receptors, indicating that the agonist-promoted increase in apparent receptor size observed here and in earlier studies does not represent a physical coupling of the receptor and the adenylate cyclase enzyme.  相似文献   

17.
The adenylyl cyclase complex, derived from turkey erythrocyte membranes, was activated using guanosine 5'-[beta, gamma-imido]triphosphate (Gpp[NH]p) and separated under low-detergent and low-salt conditions using conventional molecular-sieve chromatography followed by high-pressure ion-exchange and molecular-sieve chromatography. Although the complex remains activated with Gpp[NH]p throughout the isolation, the beta gamma subunits copurify with the cyclase. The stoichiometry of the cyclase to the alpha subunit of the stimulatory guanosine-nucleotide-binding regulatory protein (alpha s) to the beta subunit is close to unity, demonstrating that the beta gamma subunits do not dissociate from the Gs.cyclase complex (Gs, guanosine-nucleotide-binding regulatory protein) upon activation of the enzyme. If the final purification step was performed at high-salt concentrations, the beta gamma subunits could be separated from the alpha s.cyclase complex. Previously reported results on bovine brain cyclase also showed that the Gs.cyclase complex remains intact subsequent to activation by hormone and Gpp[NH]p [Marbach, I., Bar-Sinai, A., Minich, M. and Levitzki, A. (1990) J. Biol. Chem. 265, 9999-10,004]. These results, using adenylyl cyclase from two different sources, support our previous kinetic experiments which first suggested that beta gamma subunits are not released from Gs upon cyclase activation. We, therefore, argue that the mode of adenylyl cyclase inhibition by the inhibitory guanosine-nucleotide-binding regulatory protein cannot be via shifting the alpha s to beta gamma equilibrium as is commonly believed, and an alternate hypothesis is proposed.  相似文献   

18.
The relationship between calmodulin-dependent and β-adrenergic-sensitive adenylate cyclase activities was examined in membrane preparations from bovine cerebellum. Although stimulation by β-adrenergic agonists or calmodulin can occur independently, it is shown that their simultaneous presence has a strong synergistic effect on enzyme activity. Calmodulin did not influence the regulatory components of the neurotransmitter-dependent pathway as shown by the lack of effect on (1) receptor affinity, (2) GTP requirement for receptor-mediated activation, (3) rate of activation by guanyl 5′-yl imidodiphosphate [Gpp(NH)p]. Conversely, isoproterenol and guanine nucleotides did not modify to a significant extent the characteristics of enzyme stimulation by Ca2+ and calmodulin. Furthermore, calmodulin and Gpp(NH)p-dependent activities displayed different sensitivities to thermal inactivation.Our results indicate that β-adrenergic agonists and calmodulin interact with the same catalytic activity in cerebellar membranes, but presumably via two independent pathways.  相似文献   

19.
Adenylate cyclase from rabbit ventricle was solubilized in 30 to 50% yield by the nonionic detergent Lubrol PX. The detergent, when present in the assay at concentrations above 0.05%, rapidly inactivated the enzyme in assays conducted above 26 °C; assays were valid only when conducted below this temperature. The solubilized enzyme was eluted from diethylaminoethyl (DEAE)-Bio-Gel A (DEAE-agarose) with 100 mm NaCl in a yield of 25% and was free of detergent. Several properties of the solubilized detergent-free enzyme were similar to properties of the native membrane-bound species. The Km for substrate was 0.1 mm, the Ka for Mg2+ was 2.5 mm, and ATP in excess of Mg2+ was inhibitory. The enzyme was activated by F? and guanyl-5′-yl imidodiphosphate [Gpp(NH)p] in a time- and temperature-dependent manner, and activation by the latter was persistent. Activation by F? and Gpp(NH)p reduced the Ka for Mg2+. Activation by Gpp(NH)p was increased by Mg2+; the apparent Ka for activation was 0.1 μm. Multiple binding sites for Gpp(NH)p were present: one class with a Kd value of 0.11 μm was probably associated with activation of the enzyme. The soluble enzyme was insensitive to catecholamines, in both the presence and the absence of Gpp(NH)p. Sensitivity to catecholamines was not restored by the addition of phospholipids, particularly phosphatidyl inositol, in either the presence or the absence of Gpp(NH)p, and this phospholipid did not increase the sensitivity of the membrane-bound enzyme to epinephrine. Catecholamine binding sites were present, and their association with adenylate cyclase was seemingly not affected by phospholipids.  相似文献   

20.
We investigated the binding characteristics of agonists to alpha 1- and beta-adrenergic receptors of intact liver cells, broken rat liver cell membranes, and detergent-solubilized preparations under varying experimental conditions, focusing on the different "states" of the receptor for agonists and the regulation of these states by temperature and guanine nucleotides. While only low-affinity binding of agonists to both receptor subtypes was evident in studies performed at 37 degrees C with solubilized preparations, biphasic competition curves for agonists were observed in both intact cells and membrane preparations; the majority of sites were of low affinity. In membrane preparations, the nonhydrolyzable GTP analogue Gpp(NH)p caused a rightward shift of agonist competition curves and a loss of high-affinity binding. These results are consistent with the involvement of guanine nucleotide binding proteins in both alpha 1- and beta-adrenergic transduction pathways. When competition studies were performed at 4 degrees C, receptor sites existed predominantly in the high-affinity configuration, in intact cells and membranes, as well as in soluble preparations. In contrast to the studies conducted at 37 degrees C, no Gpp(NH)p-induced conversion to the lower affinity state could be demonstrated in studies performed with membrane preparations at 4 degrees C. Thus, the high-affinity state of alpha 1- and beta-adrenergic receptors is stabilized at 4 degrees C in intact cells, membranes, and soluble preparations. After incubations had been performed at 37 degrees C, high-affinity binding of agonists could not be restored by subsequent incubation at 4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号