首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Cellular hypoxia response is regulated at the level of hypoxia-inducible factor (HIF) activity. A number of recently identified oxygen sensors are HIF-modifying enzymes that respond to low oxygen by altering HIF modification and thus lead to its activation. In addition to the HIF proline hydroxylases and asparagine hydroxylases, ARD1 is recently described as a HIF-1alpha acetylase that regulates its stability. We found that ARD1 is down-regulated in a number of cell lines in response to hypoxia and hypoxia mimic compounds. After surveying these lines for erythropoietin production and retroviral transfection efficiency, we chose to use HepG2 cells to study the function of ARD1. ARD1 short hairpin RNA delivered by a retroviral vector caused >80% reduction in ARD1 message. We observed decreases in erythropoietin and vascular endothelial growth factor protein production, whereas there was no change in the HIF-1alpha protein level. A gene chip analysis of HepG2 cells transduced with virus expressing ARD1 short hairpin RNA under normoxia and hypoxia conditions or with virus overexpressing recombinant ARD1 confirmed that inhibition of ARD1 does not cause activation of HIF and downstream target genes. However, this analysis revealed that ARD1 is involved in cell proliferation and in regulating a series of cellular metabolic pathways that are regulated during hypoxia response. The role of ARD1 in cell proliferation is confirmed using fluorescence labeling analysis of cell division. From these studies we conclude that ARD1 is not required to suppress HIF but is required to maintain cell proliferation in mammalian cells.  相似文献   

9.
Chromatin as an oxygen sensor and active player in the hypoxia response   总被引:1,自引:0,他引:1  
  相似文献   

10.
Hwang II  Watson IR  Der SD  Ohh M 《Journal of virology》2006,80(21):10712-10723
Hypoxia-inducible factor (HIF) is a central regulator of cellular responses to hypoxia, and under normal oxygen tension the catalytic alpha subunit of HIF is targeted for ubiquitin-mediated destruction via the VHL-containing E3 ubiquitin ligase complex. Principally known for its association with oncogenesis, HIF has been documented to have a role in the antibacterial response. Interferons, cytokines with antiviral functions, have been shown to upregulate the expression of HIF-1alpha, but the significance of HIF in the antiviral response has not been established. Here, using renal carcinoma cells devoid of VHL or reconstituted with functional wild-type VHL or VHL mutants with various abilities to negatively regulate HIF as an ideal model system of HIF activity, we show that elevated HIF activity confers dramatically enhanced resistance to vesicular stomatitis virus (VSV)-mediated cytotoxicity. Inhibition of HIF activity using a small-molecule inhibitor, chetomin, enhanced cellular sensitivity to VSV, while treatment with hypoxia mimetic CoCl2 promoted resistance. Similarly, targeting HIF-2alpha by RNA interference also enhanced susceptibility to VSV. Expression profiling studies show that upon VSV infection, the induction of genes with known antiviral activity, such as that encoding beta interferon (IFN-beta), is significantly enhanced by HIF. These results reveal a previously unrecognized role of HIF in the antiviral response by promoting the expression of the IFN-beta gene and other genes with antiviral activity upon viral infection.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
HIF1 (hypoxia-inducible factor 1α) is considered a central oxygen-threshold sensor in mammalian cells. In the presence of oxygen, HIF1 is marked by prolyl hydroxylases (PHDs) at the oxygen-dependent degradation (ODD) domain for ubiquitination followed by rapid proteasomal degradation. However, the actual mechanisms of oxygen sensing by HIF1 are still controversial. Thus, HIF1 expression correlates poorly with tissue oxygen levels, and PHDs are themselves target genes of HIF1 considered to readjust to new oxygen thresholds. In contrast to hypoxia chambers, we here establish an enzymatic model that allows both the rapid induction of stable hypoxia and independent control of H2O2. Rapid enzymatic hypoxia only transiently induced HIF1 in various cell types and the HIF1 was completely degraded within 8–12 h despite sustained hypoxia. HIF1 degradation under sustained hypoxia could be blocked by a competitive ODD–GFP construct and PHD siRNA, but also by cobalt chloride and micromolar H2O2 levels. Concomitant induction of PHDs further confirmed their role in degrading HIF1 under enzymatic hypoxia. The rapid and complete degradation of HIF1 under enzymatic hypoxia suggests that, in addition to hypoxia sensing, the HIF1/PHD loop may rather compensate for fluctuations of tissue oxygen staying tuned to other, e.g., metabolic, signals. In addition to hypoxia chambers, enzymatic hypoxia provides a valuable tool for independently studying the regulatory functions of hypoxia and oxidative stress in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号