首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic degradation of polysaccharides harnesses multimodular enzymes whose carbohydrate binding modules (CBM) target the catalytic domain onto the recalcitrant substrate. Here we report the ab initio structure determination and subsequent refinement, at 0.8 A resolution, of the CBM36 domain of the Paenibacillus polymyxa xylanase 43A. Affinity electrophoresis, isothermal titration calorimetry, and UV difference spectroscopy demonstrate that CBM36 is a novel Ca(2+)-dependent xylan binding domain. The 3D structure of CBM36 in complex with xylotriose and Ca(2+), at 1.5 A resolution, displays significant conformational changes compared to the native structure and reveals the molecular basis for its unique Ca(2+)-dependent binding of xylooligosaccharides through coordination of the O2 and O3 hydroxyls. CBM36 is one of an emerging spectrum of carbohydrate binding modules that increasingly find applications in industry and display great potential for mapping the "glyco-architecture" of plant cells.  相似文献   

2.
The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed.  相似文献   

3.
ERGIC-53, VIPL, and VIP36 are related type 1 membrane proteins of the mammalian early secretory pathway. They are classified as L-type lectins because of their luminal carbohydrate recognition domain, which exhibits homology to leguminous lectins. These L-type lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a Ca(2+)-dependent manner, suggesting a role in glycoprotein sorting and trafficking. To understand the function of these lectins, knowledge of their carbohydrate specificity is crucial but only available for VIP36 (Kamiya, Y., Yamaguchi, Y., Takahashi, N., Arata, Y., Kasai, K. I., Ihara, Y., Matsuo, I., Ito, Y., Yamamoto, K., and Kato, K. (2005) J. Biol. Chem. 280, 37178-37182). Here we provide a comprehensive and quantitative analysis of sugar recognition of the carbohydrate recognition domains of ERGIC-53 and VIPL in comparison with VIP36 using a pyridylaminated sugar library in conjunction with frontal affinity chromatography. Frontal affinity chromatography revealed selective interaction of VIPL and VIP36 with the deglucosylated trimannose in the D1 branch of high-mannose-type oligosaccharides but with different pH dependence. ERGIC-53 bound high-mannose-type oligosaccharides with low affinity and broad specificity, not discriminating between monoglucosylated and deglucosylated high-mannosetype oligosaccharides. Based on the sugar-binding properties in conjunction with known features of these proteins, we propose a model for the action of the three lectins in glycoprotein guidance and trafficking. Moreover, structure-based mutagenesis revealed that the sugar-binding properties of these L-type lectins can be switched by single amino acid substitutions.  相似文献   

4.
The mannose receptor of macrophages and liver endothelium mediates clearance of pathogenic organisms and potentially harmful glycoconjugates. The extracellular portion of the receptor includes eight C-type carbohydrate recognition domains (CRDs), of which one, CRD-4, shows detectable binding to monosaccharide ligands. We have determined the crystal structure of CRD-4. Although the basic C-type lectin fold is preserved, a loop extends away from the core of the domain to form a domain-swapped dimer in the crystal. Of the two Ca(2+) sites, only the principal site known to mediate carbohydrate binding in other C-type lectins is occupied. This site is altered in a way that makes sugar binding impossible in the mode observed in other C-type lectins. The structure is likely to represent an endosomal form of the domain formed when Ca(2+) is lost from the auxiliary calcium site. The structure suggests a mechanism for endosomal ligand release in which the auxiliary calcium site serves as a pH sensor. Acid pH-induced removal of this Ca(2+) results in conformational rearrangements of the receptor, rendering it unable to bind carbohydrate ligands.  相似文献   

5.
The 36 kDa vesicular-integral membrane protein, VIP36, has been originally isolated from MDCK cells as a component of glycolipid-enriched detergent-insoluble complexes containing apical marker proteins, and its luminal domain shows homology to leguminous plant lectins and ERGIC-53. As the first step to identify the functional role of VIP36, the carbohydrate binding specificity of VIP36 was investigated using a fusion protein of glutathione- S -transferase and luminal domain of VIP36 (Vip36). It was found that VIP36 recognizes high-mannose type glycans containing alpha1-->2 Man residues and alpha-amino substituted asparagine. The binding of Vip36 to high-mannose type glycans was independent of Ca(2+)and theoptimal condition was pH 6.0 at 37 degrees C. The concentration at which half inhibition of the binding by Man(7-9).GlcNAc(2). N Ac. Asn occurred was 1.0 x 10(-9)M. The association constant between Man(7-9).GlcNAc(2)in porcine thyroglobulin and immobilized Vip36 was 2.1 x 10(8)M(-1)as determined by means of a biosensor based on surface plasmon resonance. These results indicate that VIP36 functions as an intracellular lectin recognizing glycoproteins which possess high-mannose type glycans, (Manalpha1-->2)(2-4).Man(5). GlcNAc(2).  相似文献   

6.
Binding specificity of the major surfactant protein SP-A from human and dog lung has been investigated. Radiobinding experiments have shown that both proteins bind in a Ca(2+)-dependent manner to galactose, mannose, fucose, and glucose linked to bovine serum albumin. These results are in accord with a previous study in which monosaccharides were linked to agarose (Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K., and Benson, B. J. (1987) J. Biol. Chem. 262, 13877-13880). Chromatogram overlays in conjunction with in situ liquid secondary ion mass spectrometry (TLC-LSIMS) of several purified glycosphingolipids and neoglycolipids as well as binding assays with glycolipids immobilized on plastic wells, demonstrate recognition of galactose (human and dog SP-A), glucose, and lactose (human SP-A) in association with specific lipids. In addition, the occurrence of several neutral and acidic glycosphingolipids in human and rat extracellular surfactants and rat alveolar type II cells is described. Selected components among the neutral glycolipids are bound by radiolabeled human SP-A; these are identified by TLC-LSIMS as predominantly ceramide mono- and disaccharides (human surfactant) and ceramide tri- and tetrasaccharides (rat surfactant and type II cells). A recombinant carbohydrate recognition domain (CRD) of human SP-A inhibits the binding of human SP-A to galactosyl ceramide and to galactose- and mannose-bovine serum albumin, indicating that the CRD is directly involved in the binding of SP-A to these ligands. These results provide evidence for a novel type of binding specificity for proteins that have Ca(2+)-dependent CRDs and raise the possibility that glycosphingolipids are endogenous ligands for SP-A.  相似文献   

7.
The extracellular portion of the macrophage mannose receptor is composed of several cysteine-rich domains, including a fibronectin type II repeat and eight segments related in sequence to Ca(2+)-dependent carbohydrate-recognition domains (CRDs) of animal lectins. Expression of portions of the receptor in vitro, in fibroblasts and in bacteria, has been used to determine which of the extracellular domains are involved in binding and endocytosis of ligand. The NH2-terminal cysteine-rich domain and the fibronectin type II repeat are not necessary for endocytosis of mannose-terminated glycoproteins. CRDs 1-3 have at most very weak affinity for carbohydrate, so the carbohydrate binding activity of the receptor resides in CRDs 4-8. CRD 4 shows the highest affinity binding and has multispecificity for a variety of monosaccharides. However, CRD 4 alone cannot account for the binding of the receptor to glycoproteins. At least 3 CRDs (4, 5, and 7) are required for high affinity binding and endocytosis of multivalent glycoconjugates. In this respect, the mannose receptor is like other carbohydrate-binding proteins, in which several CRDs, each with weak affinity for single sugars, are clustered to achieve high affinity binding to oligosaccharides. In the mannose receptor, these multiple weak interactions are achieved through several active CRDs in a single polypeptide chain rather than by oligomerization of polypeptides each containing a single CRD.  相似文献   

8.
9.
Increasing evidence now identifies surfactant protein D (SP-D) as an important element of the innate immune system of the lung. In this study, we examined the interactions of rat and human SP-D with the human pathogen, Mycoplasma pneumoniae. Rat and human SP-D bound the organism with high affinity in a reaction that required Ca(2+) and was inhibited by EGTA. Membranes derived from the organism bound the proteins in a similar manner, except the rat SP-D also exhibited a significant level of Ca(2+)-independent binding. Pretreatment of membranes with proteases did not alter the Ca(2+)-dependent SP-D binding of membranes by either protein. Mannose, glucose, maltose, and inositol, at millimolar concentrations, competed for human SP-D binding to the bacterial membrane. Lipids extracted from membranes and separated by two-dimensional thin layer chromatography bound human SP-D with high affinity in a Ca(2+)-dependent reaction. A tandem mutant of SP-D with E321Q and N323D substitutions, failed to bind M. pneumoniae lipids, directly implicating the carbohydrate recognition domain in the interaction. The interaction of rat and human SP-D with M. pneumoniae was unaffected by the presence of surfactant lipids and the hydrophobic surfactant proteins. These findings demonstrate that M. pneumoniae is likely to be recognized by SP-D in the alveolar environment and that primary determinants recognized on the organism are lipid components of the cell membrane.  相似文献   

10.
Hata S  Sorimachi H  Nakagawa K  Maeda T  Abe K  Suzuki K 《FEBS letters》2001,501(2-3):111-114
Calpain, a Ca(2+)-dependent cytosolic cysteine protease, proteolytically modulates specific substrates involved in Ca(2+)-mediated intracellular events, such as signal transduction, cell cycle, differentiation, and apoptosis. The 3D structure of m-calpain, in the absence of Ca(2+), revealed that the two subdomains (domains IIa and IIb) of the protease domain (II) have an 'open' conformation, probably due to interactions with other domains. Although the presence of an EF-hand structure was once predicted in the protease domain, no explicit Ca(2+)-binding structure was identified in the 3D structure. Therefore, it is predicted that if the protease domain is excised from the calpain molecule, it will have a Ca(2+)-independent protease activity. In this study, we have characterized a truncated human m-calpain that consists of only the protease domain. Unexpectedly, the proteolytic activity was Ca(2+)-dependent, very weak, and not effectively inhibited by calpastatin, a calpain inhibitor. Ca(2+)-dependent modification of the protease domain by the cysteine protease inhibitor, E-64c, was clearly observed as a SDS-PAGE migration change, indicating that the conformational changes of this domain are a result of Ca(2+) binding. These results suggest that the Ca(2+) binding to domain II, as well as to domains III, IV, and VI, is critical in the process of complete activation of calpain.  相似文献   

11.
Members of the mannose receptor family, the mannose receptor, the phospholipase A(2) receptor, DEC-205, and Endo180, contain multiple C-type lectin-like domains (CTLDs) within a single polypeptide. In addition, at their N termini, all four family members contain a cysteine-rich domain similar to the R-type carbohydrate recognition domains of ricin. However, despite the common presence of multiple lectin-like domains, these four endocytic receptors have divergent ligand binding activities, and it is clear that the majority of these domains do not bind sugars. Here the functions of the lectin-like domains of the most recently discovered family member, Endo180, have been investigated. Endo180 is shown to bind in a Ca(2+)-dependent manner to mannose, fucose, and N-acetylglucosamine but not to galactose. This activity is mediated by one of the eight CTLDs, CTLD2. Competition assays indicate that the monosaccharide binding specificity of Endo180 CTLD2 is similar to that of mannose receptor CTLD4. However, additional experiments indicate that, unlike the cysteine-rich domain of the mannose receptor, the cysteine-rich domain of Endo180 does not bind sulfated sugars. Thus, although Endo180 and the mannose receptor are now both known to be mannose binding lectins, each receptor is likely to have a distinct set of glycoprotein ligands in vivo.  相似文献   

12.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

13.
The vesicular integral protein of 36 kDa (VIP36) is an intracellular animal lectin that acts as a putative cargo receptor, which recycles between the Golgi and the endoplasmic reticulum. Although it is known that VIP36 interacts with glycoproteins carrying high mannose-type oligosaccharides, detailed analyses of the sugar-binding specificity that discriminates isomeric oligosaccharide structures have not yet been performed. In the present study, we have analyzed, using the frontal affinity chromatography (FAC) method, the sugar-binding properties of a recombinant carbohydrate recognition domain of VIP36 (VIP36-CRD). For this purpose, a pyridylaminated sugar library, consisting of 21 kinds of oligosaccharides, including isomeric structures, was prepared and subjected to FAC analyses. The FAC data have shown that glucosylation and trimming of the D1 mannosyl branch interfere with the binding of VIP36-CRD. VIP36-CRD exhibits a bell-shaped pH dependence of sugar binding with an optimal pH value of approximately 6.5. By inspection of the specificity and optimal pH value of the sugar binding of VIP36 and its subcellular localization, together with the organellar pH, we suggest that VIP36 binds glycoproteins that retain the intact D1 mannosyl branch in the cis-Golgi network and recycles to the endoplasmic reticulum where, due to higher pH, it releases its cargos, thereby contributing to the quality control of glycoproteins.  相似文献   

14.
LMAN1 (ERGIC-53) is a key mammalian cargo receptor responsible for the export of a subset of glycoproteins from the endoplasmic reticulum. Together with its soluble coreceptor MCFD2, LMAN1 transports coagulation factors V (FV) and VIII (FVIII). Mutations in LMAN1 or MCFD2 cause the genetic bleeding disorder combined deficiency of FV and FVIII (F5F8D). The LMAN1 carbohydrate recognition domain (CRD) binds to both glycoprotein cargo and MCFD2 in a Ca2+-dependent manner. To understand the biochemical basis and regulation of LMAN1 binding to glycoprotein cargo, we solved crystal structures of the LMAN1-CRD bound to Man-α-1,2-Man, the terminal carbohydrate moiety of high mannose glycans. Our structural data, combined with mutagenesis and in vitro binding assays, define the central mannose-binding site on LMAN1 and pinpoint histidine 178 and glycines 251/252 as critical residues for FV/FVIII binding. We also show that mannobiose binding is relatively independent of pH in the range relevant for endoplasmic reticulum-to-Golgi traffic, but is sensitive to lowered Ca2+ concentrations. The distinct LMAN1/MCFD2 interaction is maintained at these lowered Ca2+ concentrations. Our results suggest that compartmental changes in Ca2+ concentration regulate glycoprotein cargo binding and release from the LMAN1·MCFD2 complex in the early secretory pathway.  相似文献   

15.
The C2 domain acts as a membrane-targeting module in a diverse group of proteins including classical protein kinase Cs (PKCs), where it plays an essential role in activation via calcium-dependent interactions with phosphatidylserine. The three-dimensional structures of the Ca(2+)-bound forms of the PKCalpha-C2 domain both in the absence and presence of 1, 2-dicaproyl-sn-phosphatidyl-L-serine have now been determined by X-ray crystallography at 2.4 and 2.6 A resolution, respectively. In the structure of the C2 ternary complex, the glycerophosphoserine moiety of the phospholipid adopts a quasi-cyclic conformation, with the phosphoryl group directly coordinated to one of the Ca(2+) ions. Specific recognition of the phosphatidylserine is reinforced by additional hydrogen bonds and hydrophobic interactions with protein residues in the vicinity of the Ca(2+) binding region. The central feature of the PKCalpha-C2 domain structure is an eight-stranded, anti-parallel beta-barrel with a molecular topology and organization of the Ca(2+) binding region closely related to that found in PKCbeta-C2, although only two Ca(2+) ions have been located bound to the PKCalpha-C2 domain. The structural information provided by these results suggests a membrane binding mechanism of the PKCalpha-C2 domain in which calcium ions directly mediate the phosphatidylserine recognition while the calcium binding region 3 might penetrate into the phospholipid bilayer.  相似文献   

16.
17.
GMP-140, a receptor for myeloid cells that is expressed on surfaces of thrombin-activated platelets and endothelial cells, is a member of the selectin family of adhesion molecules that regulate leukocyte interactions with the blood vessel wall. Each selectin contains an N-terminal domain homologous to Ca(2+)-dependent lectins and mediates cell-cell contact by binding to oligosaccharide ligands in a Ca(2+)-dependent manner. The mechanisms by which Ca2+ promotes selectin-dependent cellular interactions have not been defined. We demonstrate that purified GMP-140 contains two high affinity binding sites for Ca2+ as measured by equilibrium dialysis (Kd = 22 +/- 2 microM). Occupancy of these sites by Ca2+ alters the conformation of the protein as detected by a reduction in intrinsic fluorescence emission intensity (Kd = 4.8 +/- 0.2 microM). This Ca(2+)-dependent conformational change exposes an epitope spanning residues 19-34 of the lectin domain that is recognized by a monoclonal antibody capable of blocking neutrophil adhesion to GMP-140 (half-maximal antibody binding at approximately 20 microM Ca2+). Furthermore, a synthetic peptide encoding this epitope, CQNRYTDLVAIQNKNE, inhibits neutrophil binding to GMP-140. Mg2+ also alters the conformation of the protein, but not in a manner that will support leukocyte recognition in the absence of Ca2+. There is a strong correlation between the Ca2+ levels required for neutrophil adhesion to GMP-140, for occupancy of the two Ca(2+)-binding sites, for the fluorescence-detected conformational change, and for exposure of the antibody epitope in the lectin domain. We conclude that binding of Ca2+ to high affinity sites on GMP-140 modulates the conformation of the lectin domain in a manner that is essential for leukocyte recognition.  相似文献   

18.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

19.
Codakine is a new Ca(2+)-dependent mannose-binding C-type lectin (MBL) isolated from the gill tissue of the tropical clam, Codakia orbicularis. Bioinformatic analyses with the BLAST program have revealed similarities with marine lectins involved in immunity whose three-dimensional (3D) structures were unknown up until recently. In this article, we present bioinformatic analyses of marine lectins that are homologous to codakine, in particular lectins from the sea worm Laxus oneistus, named mermaid. These lectins are involved in the symbiotic association with sulphur-oxidizing bacteria which are closely related to the C. orbicularis gill symbiont. Using homology modelling, folding that is characteristic of C-type lectins was observed in all the marine Ca(2+)-dependent lectins studied, with conservation of random coiled structures of the carbohydrate recognition domain (CRD) and Ca(2+)-binding sites. Like codakine, the marine lectins analysed contain a signal peptide commonly found in secreted and transmembrane proteins. The majority of the predictive 3D models established from the lectins exhibit a common feature, namely the involvement in invertebrate and vertebrate immunity (dendritic cell receptor, macrophage receptor, etc.). These bioinformatic analyses and the literature data support the hypothesis that codakine, like the L. oneistus mermaids, is probably involved in the cellular mediation of symbiosis and defence against pathogenic microorganisms.  相似文献   

20.
Lomasney JW  Cheng HF  Kobayashi M  King K 《Biochemistry》2012,51(11):2246-2257
Many membrane-associated enzymes, including those of the phospholipase C (PLC) superfamily, are regulated by specific interactions with lipids. Previously, we have shown that the C2 domain of PLC δ1 is required for phosphatidylserine (PS)-dependent enzyme activation and that activation requires the presence of Ca(2+). To identify the site of interaction and the role of Ca(2+) in the activation mechanism, we mutagenized three highly conserved Ca(2+) binding residues (Asp-653, Asp-706, and Asp-708) to Gly in the C2 domain of PLC δ1. The PS-dependent Ca(2+) binding affinities of the mutant enzymes D653G, D706G, and D708G were reduced by 1 order of magnitude, and the maximal level of Ca(2+) binding was reduced to half of that of the native enzyme. The level of Ca(2+)-dependent PS binding was also reduced in the mutant enzymes. Under basal conditions, the Ca(2+) dependence and the maximal level of hydrolysis of phosphatidylinositol 4,5-bisphosphate were not altered in the mutants. However, the Ca(2+)-dependent PS stimulation was severely defective. PS reduces the K(m) of the native enzyme almost 20-fold, but far less for the mutants. Replacing Asp-653, Asp-706, and Asp-708 simultaneously with glycine in the C2 domain of PLC δ1 leads to a complete and selective loss of the stimulation and binding by PS. These results show that D653, D706, and D708 are required for Ca(2+) binding in the C2 domain and demonstrate a mechanism by which C2 domains can mediate regulation of enzyme activity by specific lipid ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号