首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We found opposite regulation of uncoupling protein 3 (UCP3) in slow-twitch soleus and fast-twitch gastrocnemius muscles of rats during cold exposure. Namely, the UCP3 mRNA level was downregulated in the soleus muscles, but upregulated in the gastrocnemius muscles after a 24-h cold exposure. In the analysis of UCP3 protein, we first succeeded in detecting UCP3 short-form as well as the long-form in vivo, which levels were decreased markedly in the cold-exposed soleus muscles. However, the levels of UCP3 and cytochrome oxidase subunit IV were well maintained in the cold-exposed gastrocnemius muscles with a rise in the total mitochondrial protein level, suggesting an increase of total oxidative ability. The fast-twitch muscle rather than the slow-twitch one may play an important role in adaptive responses, including thermogenesis under acute cold exposure.  相似文献   

2.
Tissue contents of the sarcoplasmic-reticulum Ca2+-ATPase (Ca2+ +Mg2+-dependent ATPase), of calsequestrin and of parvalbumin were immunochemically quantified in homogenates of fast- and slow-twitch muscles of embryonic, maturing and adult rabbits. Unlike parvalbumin, Ca2+-ATPase and calsequestrin were expressed in embryonic muscles. Presumptive fast-twitch muscles displayed higher contents of these two proteins than did presumptive slow-twitch muscles. Calsequestrin steeply increased before birth and reached adult values in the two muscle types 4 days after birth. The main increase in Ca2+-ATPase occurred during the first 2 weeks after birth. Denervation of postnatal fast- and slow-twitch muscles decreased calsequestrin to amounts typical of embryonic muscle and suppressed further increases of Ca2+-ATPase. Denervation caused slight decreases in Ca2+-ATPase in adult fast-twitch, but not in slow-twitch, muscles, whereas calsequestrin was greatly decreased in both. Chronic low-frequency stimulation induced a rapid decrease in parvalbumin in fast-twitch muscle, which was preceded by a drastic decrease in the amount of its polyadenylated RNA translatable in vitro. Tissue amounts of Ca2+-ATPase and calsequestrin were essentially unaltered up to periods of 52 days stimulation. These results indicate that in fast- and slow-twitch muscles different basal amounts of Ca2+-ATPase and calsequestrin are expressed independent of innervation, but that neuromuscular activity has a modulatory effect. Conversely, the expression of parvalbumin is greatly enhanced by phasic, and drastically decreased by tonic, motor-neuron activity.  相似文献   

3.
4.
Parvalbumin (PV) is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT) cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in “PV-ergic” cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2), mitocalcin (Efhd1), mitochondrial calcium uptake 1 (Micu1), mitochondrial calcium uniporter (Mcu), mitochondrial calcium uniporter regulator 1 (Mcur1), cytochrome c oxidase subunit 1 (COX1), and ATP synthase subunit β (Atp5b) were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK) cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro by adjusting the relative mitochondrial volume and modifying the mitochondrial protein composition conceivably to increase their Ca2+-buffering/sequestration capacity.  相似文献   

5.
Calcium uptake in mitochondria from different skeletal muscle types   总被引:5,自引:0,他引:5  
The kinetics of calcium (Ca2+) uptake have been studied in mitochondria isolated from the different types of skeletal muscle. These studies demonstrate that the Ca2+ uptake properties of skeletal mitochondria are similar to those from liver and cardiac mitochondria. The Ca2+ carriers apparently have a high affinity for Ca2+ (Michaelis constants in the microM range). The relationship between Ca2+ uptake and initial Ca2+ concentration (10(-5) to 10(-7) M) is sigmoid in all mitochondria from the different skeletal muscle types suggesting that the uptake process is cooperative. Hill plots reveal coefficients of approximately 2 for mitochondria from fast-twitch muscle and 3.5 for slow-twitch muscle, adding further evidence to the concept that the uptake process is cooperative. An analysis of the potential role of mitochondria in the sequestration of Ca2+ during muscular contraction demonstrated that mitochondria from slow-twitch muscle of both rats and rabbits can potentially account for 100% of the relaxation rate at a low frequency of stimulation (5 Hz). In fast-twitch muscle, the mitochondria appear unable to play a significant role in muscle relaxation, particularly at stimulation frequencies that are considered in the normal physiological range. In summary, it appears that Ca2+ uptake by mitochondria from slow-twitch skeletal muscle has kinetic characteristics which make it important as a potential regulator of Ca2+ within the muscle cell under normal physiological conditions.  相似文献   

6.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

7.
We investigated the effects of aging and denervation on the gene expression of uncoupling proteins (UCPs) in slow-twitch soleus and fast-twitch gastrocnemius muscles. In a comparison between the control limbs of 6- and 24-month-old rats, the mRNA levels of UCP3, heart-type fatty acid binding protein (HFABP), and glucose transporter-4 (GLUT4) were considerably lower in the gastrocnemius muscles of the older rats, whereas no significant differences in the mRNA levels of those genes as well as UCP2 and cytochrome oxidase subunit IV (COX-IV) were observed in the soleus muscles of young and old rats. The UCP3 and COX-IV protein levels were also reduced considerably in the aged gastrocnemius muscles with atrophy. Denervation of the sciatic nerve caused an increase in UCP3 mRNA levels in both muscles, but the regulation of other genes contrasted between the two types of skeletal muscles. In spite of the increased mRNA level, a remarkable reduction in UCP3 protein was found in the denervated gastrocnemius muscles. These results indicate that the effects of aging and denervation on the gene expression of UCPs, HFABP, GLUT4, and COX-IV are different between the muscle types. The reduction in the mitochondrial UCP3 and COX proteins in aged fast-twitch muscles may have a negative effect on energy metabolism and thermogenesis in old animals.  相似文献   

8.
Increases in contraction-stimulated glucose transport in fast-twitch rat epitrochlearis muscle are mediated by AMPK- and Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent signaling pathways. However, recent studies provide evidence suggesting that contraction-stimulated glucose transport in slow-twitch skeletal muscle is mediated through an AMPK-independent pathway. The purpose of the present study was to test the hypothesis that contraction-stimulated glucose transport in rat slow-twitch soleus muscle is mediated by an AMPK-independent/Ca2+-dependent pathway. Caffeine, a sarcoplasmic reticulum (SR) Ca2+-releasing agent, at a concentration that does not cause muscle contractions or decreases in high-energy phosphates, led to an approximately 2-fold increase in 2-deoxyglucose (2-DG) uptake in isolated split soleus muscles. This increase in glucose transport was prevented by the SR calcium channel blocker dantrolene and the CAMK inhibitor KN93. Conversely, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an AMPK activator, had no effect on 2-DG uptake in isolated split soleus muscles yet resulted in an approximately 2-fold increase in the phosphorylation of AMPK and its downstream substrate acetyl-CoA carboxylase. The hypoxia-induced increase in 2-DG uptake was prevented by dantrolene and KN93, whereas hypoxia-stimulated phosphorylation of AMPK was unaltered by these agents. Tetanic muscle contractions resulted in an approximately 3.5-fold increase in 2-DG uptake that was prevented by KN93, which did not prevent AMPK phosphorylation. Taken in concert, our results provide evidence that hypoxia- and contraction-stimulated glucose transport is mediated entirely through a Ca2+-dependent mechanism in rat slow-twitch muscle.  相似文献   

9.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

10.
Adult rat fast-twitch skeletal muscle such as extensor digitorum longus contains alpha- and beta-tropomyosin subunits, as is the case in the corresponding muscles of rabbit. Adult rat soleus muscle contains beta-, gamma- and delta-tropomyosins, but no significant amounts of alpha-tropomyosin. Evidence for the presence of phosphorylated forms of at least three of the four tropomyosin subunit isoforms was obtained, particularly in developing muscle. Immediately after birth alpha- and beta-tropomyosins were the major components of skeletal muscle, in both fast-twitch and slow-twitch muscles. Differentiation into slow-twitch skeletal muscles was accompanied by a fall in the amount of alpha-tropomyosin subunit and its replacement with gamma- and delta-subunits. After denervation and during regeneration after injury, the tropomyosin composition of slow-twitch skeletal muscle changed to that associated with fast-twitch muscle. Thyroidectomy slowed down the changes in tropomyosin composition resulting from the denervation of soleus muscle. The results suggest that the 'ground state' of tropomyosin-gene expression in the skeletal muscle gives rise to alpha- and beta-tropomyosin subunits. Innervation by a 'slow-twitch' nerve is essential for the expression of the genes controlling gamma- and delta-subunits. There appears to be reciprocal relationship between expression of the gene controlling the synthesis of alpha-tropomyosin and those controlling the synthesis of gamma- and delta-tropomyosin subunits.  相似文献   

11.
12.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

13.
We previously showed that, in contrast to the distribution of S100b (beta beta), S100a0 (alpha alpha) is mainly present in human skeletal and heart muscles at the level of 1-2 micrograms/mg of soluble protein and is universally distributed at high levels in skeletal and heart muscles of various mammals. To elucidate cellular and ultrastructural localizations of the alpha subunit of S100 protein (S100-alpha) in skeletal muscle, we used immunohistochemical and enzyme immunoassay methods. The immunohistochemical study revealed that S100-alpha is mainly localized in slow-twitch muscle fibers, whereas the beta subunit of S100 protein (S100-beta) was not detected in both types of muscle fibers, an observation indicating that the predominant form of S100 protein in the slow-twitch muscle fiber is not S100a or S100b, but S100a0. The quantitative analysis using enzyme immunoassay corroborates the immunohistochemical finding: The S100-alpha concentration of mouse soleus muscle (mainly composed of slow-twitch muscle fibers) is about threefold higher than that of mouse rectus femoris muscle (mainly composed of fast-twitch muscle fibers). At the ultrastructural level, S100-alpha is associated with polysomes, sarcoplasmic reticulum, the plasma membrane, the pellicle around lipid droplets, the outer membrane of mitochondria, and thin and thick filaments, by immunoelectron microscopy.  相似文献   

14.
Creatine kinase (CK) is a key enzyme for maintaining a constant ATP/ADP ratio during rapid energy turnover. To investigate the role of CK in skeletal muscle fatigue, we used isolated whole muscles and intact single fibers from CK-deficient mice (CK(-/-)). With high-intensity electrical stimulation, single fibers from CK(-/-) mice displayed a transient decrease in both tetanic free myoplasmic [Ca(2+)] ([Ca(2+)](i), measured with the fluorescent dye indo-1) and force that was not observed in wild-type fibers. With less intense, repeated tetanic stimulation single fibers and EDL muscles, both of which are fast-twitch, fatigued more slowly in CK(-/-) than in wild-type mice; on the other hand, the slow-twitch soleus muscle fatigued more rapidly in CK(-/-) mice. In single wild-type fibers, tetanic force decreased and [Ca(2+)](i) increased during the first 10 fatiguing tetani, but this was not observed in CK(-/-) fibers. Fatigue was not accompanied by phosphocreatine breakdown and accumulation of inorganic phosphate in CK(-/-) muscles. In conclusion, CK is important for avoiding fatigue at the onset of high-intensity stimulation. However, during more prolonged stimulation, CK may contribute to the fatigue process by increasing the myoplasmic concentration of inorganic phosphate.  相似文献   

15.
Male skeletal muscles are generally faster and have higher maximum power output than female muscles. Conversely, during repeated contractions, female muscles are generally more fatigue resistant and recover faster. We studied the role of estrogen receptor-beta (ERbeta) in this gender difference by comparing contractile function of soleus (mainly slow-twitch) and extensor digitorum longus (fast-twitch) muscles isolated from ERbeta-deficient (ERbeta(-/-)) and wild-type mice of both sexes. Results showed generally shorter contraction and relaxation times in male compared with female muscles, and ERbeta deficiency had no effect on this. Fatigue (induced by repeated tetanic contractions) and recovery of female muscles were not affected by ERbeta deficiency. However, male ERbeta(-/-) muscles were slightly more fatigue resistant and produced higher forces during the recovery period than wild-type male muscles. In fact, female muscles and male ERbeta(-/-) muscles displayed markedly better recovery than male wild-type muscles. Gene screening of male soleus muscles showed 25 genes that were differently expressed in ERbeta(-/-) and wild-type mice. Five of these genes were selected for further analysis: muscle ankyrin repeat protein-2, muscle LIM protein, calsequestrin, parvalbumin, and aquaporin-1. Expression of these genes showed a similar general pattern: increased expression in male and decreased expression in female ERbeta(-/-) muscles. In conclusion, ERbeta deficiency results in increased performance during fatigue and recovery of male muscles, whereas female muscles are not affected. Improved contractile performance of male ERbeta(-/-) mouse muscles was associated with increased expression of mRNAs encoding important muscle proteins.  相似文献   

16.
We have used immunocytological techniques to examine the developmental expression of the Ca2+-binding protein parvalbumin in Xenopus laevis embryos. Western blot experiments show that at least three different forms of parvalbumin are expressed during embryogenesis; the tadpole tail expresses one form, adult brain expresses another, mylohyoid muscle expresses both, and gastrocnemius and sartorius muscles express these two plus a third form. Parvalbumin (PV) is first detectable by immunofluorescence at stages 24-25 of development, a time when myotomal muscles are differentiating and contractile activity occurs spontaneously in embryos. At metamorphosis, PV is expressed in developing limb muscles. While the majority of skeletal muscle fibers express high levels of PV in both embryos and adults, a second fiber type has no detectable PV. The arrangement of PV-containing fibers is stereotyped in each muscle group examined. Histochemical staining of tadpole muscles indicate that PV-containing fibers correspond to fast-twitch skeletal muscles, whereas those without PV correspond to slow-twitch muscles. During tail resorption at metamorphosis, PV appears to be extruded from dying tail muscle cells and taken up by phagocytic cells.  相似文献   

17.
Antibodies directed against purified Ca-ATPase from sarcoplasmic reticulum, calsequestrin and parvalbumin from rabbit fast-twitch muscle were raised in sheep. The specificity of the antibodies was shown by immunoblot analysis and by enzyme-linked immunoadsorbent assays (ELISAs). IgG against the sarcoplasmic reticulum Ca-ATPase inhibited the catalytic activities of Ca-ATPase from fast-twitch (psoas, tibialis anterior) and slow-twitch (soleus) muscles to the same degree. In non-equilibrium competitive ELISAs the anti(Ca-ATPase) IgG displayed a slightly higher affinity for the Ca-ATPase from fast-twitch muscle than for that from slow-twitch muscle. This suggests a fiber-type-specific polymorphism of the sarcoplasmic reticulum Ca-ATPase. Quantification of Ca-ATPase, calsequestrin and parvalbumin in various rabbit skeletal muscles of histochemically determined fiber composition was achieved by sandwich ELISA. Ca-ATPase was found to be 6-7 times higher in fast than in slow-twitch muscles. A slightly higher concentration was found in fast-twitch muscles with a higher percentage of IIb fibers when compared with fast-twitch muscles with a higher percentage of IIa fibers. Thus Ca-ATPase is distributed as follows, IIb greater than or equal to IIa much greater than I. Calsequestrin was uniformly distributed in fast-twitch muscles independently of their IIa/IIb fiber ratio and displayed 50% lower concentrations in slow than in fast-twitch muscles (IIb = IIa greater than I). Parvalbumin contents were 200-300-fold higher in fast than in slow-twitch muscles. Significantly lower parvalbumin concentrations were found in fast-twitch muscles with a higher percentage of IIa fibers than in fast-twitch muscles with a higher percentage of IIb fibers (IIb greater than IIa much greater than I).  相似文献   

18.
The Ca2+ uptake mechanism of sarcoplasmic reticulum (SR) was comparatively examined in fast-twitch and slow-twitch muscles. The competition of Mg2+ and Ca2+ at the binding sites is important in the function of the Mg2+-activated Ca2+-ATPase of the SR. The best ratio of divalent cations for Ca2+ uptake is not the same in the two kinds of muscle. The formation of the phosphorylated intermediate in more dependent on changes in the concentrations of the two divalent cations in the SR membrane of the fast-twitch than in that of the slow-twitch muscle. The requirement for Mg2+ to an efficient function of the transport ATPase and Ca2+ uptake of SR is greater in the latter than in the former.  相似文献   

19.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号