首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

5.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

6.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

7.
The present study was undertaken to investigate the role of inducible nitric oxide synthase in a rat model of persistent pain. The effects of L-N6 (1-iminoethyl) lysine (L-NIL), a relatively potent and relatively selective inhibitor of inducible nitric oxide synthase, were investigated in carrageenan induced hyperalgesia L-NIL (0.1 microMole) injected intraplantar or intrathecal markedly enhanced carrageenan induced hyperalgesia. These effects were reversed during the third hour by co-administration of L-arginine (900 mg/kg i.p.) but not D-arginine. Methylene blue (MB), a soluble guanylate cyclase inhibitor, administered intrathecally (0.1 microg) had no effect on L-NIL potentiation of carrageenan hyperalgesia but abolished antinociception induced by L-arginine. Obtained results suggest that nitric oxide derived from inducible nitric oxide synthase play an inhibitory role in carrageenan produced hyperalgesia in rat.  相似文献   

8.
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808–3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 and 35 ± 3 s−1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Wu GF  Pewe L  Perlman S 《Journal of virology》2000,74(16):7683-7686
Demyelination induced by mouse hepatitis virus (MHV), strain JHM, is in large part immune mediated, but little is known about the mechanisms involved in this process. Previous results suggest that inducible nitric oxide synthase (NOS2) contributes transiently to MHV-induced demyelination. Herein, we show that equivalent amounts of demyelination were evident at day 12 after MHV infection in mice genetically deficient in NOS2 (NOS2(-/-)) and in C57BL/6 mice. Furthermore, using an established adoptive transfer model and pharmacological inhibitors of NOS2 function, we could demonstrate no effect on MHV-induced demyelination. These results indicate that NOS2 function is not required for demyelination in mice infected with MHV.  相似文献   

10.
A series of compounds was rationally designed as inhibitors of dimer formation of the inducible isoform of nitric oxide synthase, and subsequent nitric oxide production. The conformation of two fragments obtained from a crystal structure was utilized to design a tether connecting those same two fragments. The resulting compounds were potent dimerization inhibitors that bound to the enzyme in a similar conformation as the fragments.  相似文献   

11.
Cutaneous leishmaniasis (CL) is an infectious disease caused by Leishmania parasite. The expression of inducible nitric oxide synthase (iNOS) and generation of nitric oxide in response to IFN-γ and TNF-α is important in control of infection. The aim of the study was to determine the expression of iNOS in the lesions of Leishmania tropica, and whether there was a correlation between the level of expression and the duration of the disease. Punch biopsy was performed from patients (n = 29) and iNOS immunohistochemical staining was applied. Expression of iNOS protein was detected 82.8% of patients. There was a strong expression with the duration of the disease less than 6 months (p < 0.002). These findings demonstrate that iNOS has a role in L. tropica especially during the early stages of the infection. (Mol Cell Biochem xxx: 147–149, 2005)  相似文献   

12.
Feng C  Cao L  Zuo Z 《FEBS letters》2011,585(15):2488-2492
Vector-mediated delivery of short-hairpin RNA (shRNA) to regulate gene expression holds a great therapeutic promise. We hypothesize that gene expression can be autoregulated with RNA interference. We used inducible nitric oxide synthase (iNOS) as a gene model to test this hypothesis. Lipopolysaccharide dose-dependently increased iNOS in rat aortic smooth muscle cells and the nitrite production from these cells. These increases were attenuated in cells transfected with plasmids containing code for iNOS shRNA whose expression was controlled by an iNOS promoter. The production of shRNA was lipopolysaccharide dose-dependent. The lipopolysaccharide-induced iNOS expression in rat C6 glioma cells also was attenuated by transfection with plasmids containing the iNOS shRNA code. These results provide proof-of-concept evidence for using RNA interference technique to achieve autoregulation of gene expression.  相似文献   

13.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

14.
A ferric heme-nitric oxide (NO) complex can build up in mouse inducible nitric oxide synthase (iNOS) during NO synthesis from L-arginine. We investigated its formation kinetics, effect on catalytic activity, dependence on solution NO concentration, and effect on enzyme oxygen response (apparent KmO2). Heme-NO complex formation was biphasic and was linked kinetically to an inhibition of electron flux and catalysis in iNOS. Experiments that utilized a superoxide generating system to scavenge NO showed that the magnitude of heme-NO complex formation directly depended on the NO concentration achieved in the reaction solution. However, a minor portion of heme-NO complex (20%) still formed during NO synthesis even when solution NO was completely scavenged. Formation of the intrinsic heme-NO complex, and the heme-NO complex related to buildup of solution NO, increased the apparent KmO2 of iNOS by 10- and 4-fold, respectively. Together, the data show heme-NO complex buildup in iNOS is due to both intrinsic NO binding and to equilibrium binding of solution NO, with the latter predominating when NO reaches high nanomolar to low micromolar concentrations. This behavior distinguishes iNOS from the other NOS isoforms and indicates a more complex regulation is possible for its activity and oxygen response in biologic settings.  相似文献   

15.
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer''s disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1–11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.  相似文献   

16.
17.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

18.
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号