首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Autoimmune hyperthyroidism, Graves' disease, can be induced by immunizing susceptible strains of mice with adenovirus encoding the human thyrotropin receptor (TSHR) or its A-subunit. Studies in two small families of recombinant inbred strains showed that susceptibility to developing TSHR antibodies (measured by TSH binding inhibition, TBI) was linked to the MHC region whereas genes on different chromosomes contributed to hyperthyroidism. We have now investigated TSHR antibody production and hyperthyroidism induced by TSHR A-subunit adenovirus immunization of a larger family of strains (26 of the AXB and BXA strains). Analysis of the combined AXB and BXA families provided unexpected insight into several aspects of Graves' disease. First, extreme thyroid hyperplasia and hyperthyroidism in one remarkable strain, BXA13, reflected an inability to generate non-functional TSHR antibodies measured by ELISA. Although neutral TSHR antibodies have been detected in Graves' sera, pathogenic, functional TSHR antibodies in Graves' patients are undetectable by ELISA. Therefore, this strain immunized with A-subunit-adenovirus that generates only functional TSHR antibodies may provide an improved model for studies of induced Graves' disease. Second, our combined analysis of linkage data from this and previous work strengthens the evidence that gene variants in the immunoglobulin heavy chain V region contribute to generating thyroid stimulating antibodies. Third, a broad region that encompasses the MHC region on mouse chromosome 17 is linked to the development of TSHR antibodies (measured by TBI). Most importantly, unlike other strains, TBI linkage in the AXB and BXA families to MHC class I and class II genes provides an explanation for the unresolved class I/class II difference in humans.  相似文献   

2.
Graves' hyperthyroidism, an organ-specific autoimmune disease mediated by stimulatory thyrotropin receptor (TSHR) autoantibodies, has been considered a Th2-dominant disease. However, recent data with mouse Graves' models are conflicting. For example, we recently demonstrated that injection of BALB/c mice with adenovirus coding the TSHR induced Graves' hyperthyroidism characterized by mixed Th1 and Th2 immune responses against the TSHR, and that transient coexpression of the Th2 cytokine IL-4 by adenovirus skewed Ag-specific immune response toward Th2 and suppressed disease induction. To gain further insight into the relationship between immune polarization and Graves' disease, we evaluated the effect of Th2 immune polarization by helminth Schistosoma mansoni infection and alpha-galactosylceramide (alpha-GalCer), both known to bias the systemic immune response to Th2, on Graves' disease. S. mansoni infection first induced mixed Th1 and Th2 immune responses to soluble worm Ags, followed by a Th2 response to soluble egg Ags. Prior infection with S. mansoni suppressed the Th1-type anti-TSHR immune response, as demonstrated by impaired Ag-specific IFN-gamma secretion of splenocytes and decreased titers of IgG2a subclass anti-TSHR Abs, and also prevented disease development. Similarly, alpha-GalCer suppressed Ag-specific splenocyte secretion of IFN-gamma and prevented disease induction. However, once the anti-TSHR immune response was fully induced, S. mansoni or alpha-GalCer was ineffective in curing disease. These data support the Th1 theory in Graves' disease and indicate that suppression of the Th1-type immune response at the time of Ag priming may be crucial for inhibiting the pathogenic anti-TSHR immune response.  相似文献   

3.
In this work we report a novel method to efficiently induce a murine model of Graves' hyperthyroidism. Inbred mice of different strains were immunized by i.m. injection with adenovirus expressing thyrotropin receptor (TSHR) or beta-galactosidase (1 x 10(11) particles/mouse, three times at 3-wk intervals) and followed up to 8 wk after the third immunization. Fifty-five percent of female and 33% of male BALB/c (H-2(d)) and 25% of female C57BL/6 (H-2(b)) mice developed Graves'-like hyperthyroidism with elevated serum thyroxine (T(4)) levels and positive anti-TSHR autoantibodies with thyroid-stimulating Ig (TSI) and TSH-binding inhibiting Ig (TBII) activities. In contrast, none of female CBA/J (H-2(k)), DBA/1J (H-2(q)), or SJL/J (H-2(s)) mice developed Graves' hyperthyroidism or anti-TSHR autoantibodies except SJL/J, which showed strong TBII activities. There was a significant positive correlation between TSI values and T(4) levels, but the correlations between T(4) and TBII and between TSI and TBII were very weak. TSI activities in sera from hyperthyroid mice measured with some chimeric TSH/lutropin receptors suggested that their epitope(s) on TSHR appeared similar to those in patients with Graves' disease. The thyroid glands from hyperthyroid mice displayed diffuse enlargement with hypertrophy and hypercellularity of follicular epithelia with occasional protrusion into the follicular lumen, characteristics of Graves' hyperthyroidism. Decreased amounts of colloid were also observed. However, there was no inflammatory cell infiltration. Furthermore, extraocular muscles from hyperthyroid mice were normal. Thus, the highly efficient means that we now report to induce Graves' hyperthyroidism in mice will be very useful for studying the pathogenesis of autoimmunity in Graves' disease.  相似文献   

4.
Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model involving injection of adenovirus expressing the TSHR (AdCMVTSHR). Coinjection with adenovirus expressing IL-4 (AdRGDCMVIL-4) decreased the ratio of Th1/Th2-type anti-TSHR Ab subclasses (IgG2a/IgG1) and suppressed the production of IFN-gamma by splenocytes in response to TSHR Ag. Importantly, immune deviation toward Th2 was accompanied by significant inhibition of thyroid-stimulating Ab production and reduction in hyperthyroidism. However, in a therapeutic setting, injection of AdRGDCMVIL-4 alone or in combination with AdCMVTSHR into hyperthyroid mice had no beneficial effect. In contrast, coinjection of adenoviruses expressing IL-12 and the TSHR promoted the differentiation of Th1-type anti-TSHR immune responses as demonstrated by augmented Ag-specific IFN-gamma secretion from splenocytes without changing disease incidence. Coinjection of adenoviral vectors expressing IL-4 or IL-12 had no effect on the titers of anti-TSHR Abs determined by ELISA or thyroid-stimulating hormone-binding inhibiting Ig assays, suggesting that Ab quality, not quantity, is responsible for disease induction. Our observations demonstrate the critical role of Th1 immune responses in a murine model of Graves' hyperthyroidism. These data may raise a cautionary note for therapeutic strategies aimed at reversing Th2-mediated autoimmune responses in Graves' disease in humans.  相似文献   

5.
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance.  相似文献   

6.
In autoimmune Graves' disease (GD), autoantibodies bind to the thyrotropin receptor (TSHR) and cause hyperthyroidism. We studied the effects of fms-like tyrosine kinase receptor 3 ligand (Flt3-L) or GM-CSF treatment on the development of experimental autoimmune GD (EAGD) in mice, a slowly progressing Ab-mediated organ-specific autoimmune disease of the thyroid induced by immunization with syngeneic cells expressing TSHR. Flt3-L and GM-CSF treatment resulted in up-regulation of CD8a(+) and CD8a(-) dendritic cells, and skewing of cytokine and immune responses to TSHR in favor of Th1 and Th2, respectively. However, this skewing did not persist until the later stages, and thus failed to affect the course or severity of the disease. To determine whether the total absence of either IL-4 or IFN-gamma could affect the development of EAGD, we immunized wild-type, IFN-gamma(-/-) and IL-4(-/-) BALB/c mice with TSHR. Nearly 100% of the wild-type and IFN-gamma(-/-) mice developed EAGD with optimal TSHR-specific immune responses, while IL-4(-/-) mice completely resisted disease and showed delayed and suboptimal pathogenic Ab response. These data demonstrated that skewing immune responses to TSHR, using either Flt3-L or GM-CSF, in favor of Th1 or Th2, respectively, may not be sufficient to alter the course of the disease, while the complete absence of IL-4, but not IFN-gamma, can prevent the development of EAGD.  相似文献   

7.
为评价在小鼠体内表达流感病毒M1和HA基因诱导的免疫反应,制备共表达H5N1亚型禽流感病毒 (A/Anhui/1/2005) 全长基质蛋白1 (M1) 基因和血凝素 (HA) 基因的重组DNA疫苗pStar-M1/HA和重组腺病毒载体疫苗Ad-M1/HA,将其按初免-加强程序免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集小鼠血清用于检测体液免疫应答,末次免疫后14 d采集小鼠脾淋巴细胞用于检测细胞免疫应答。血凝  相似文献   

8.
Induction of experimental autoimmune Graves' disease in BALB/c mice.   总被引:10,自引:0,他引:10  
We immunized BALB/c mice with M12 cells (H-2d) expressing either mouse (mM12 cells) or human thyrotropin receptor (TSHR) (hM12 cells). Immunized mice developed autoantibodies to native TSHR by day 90 and, by day 180, showed considerable stimulatory Ab activity as measured by their ability to enhance cAMP production (ranging from 6. 52 to 20.83 pmol/ml in different treatment groups relative to 1.83 pmol/ml for controls) by TSHR-expressing Chinese hamster ovary cells. These mice developed severe hyperthyroidism with significant elevations in both tetraiodothyronine and triiodothyronine hormones. Tetraiodothyronine levels in different experimental groups ranged from a mean of 8.66-12.4 microg/dl, relative to 4.8 microg/dl in controls. Similarly, mean triiodothyronine values ranged from 156.18 to 195.13 ng/dl, relative to 34.99 ng/dl for controls. Next, we immunized BALB/c mice with a soluble extracellular domain of human TSHR (TBP), or TBP expressed on human embryonic kidney cells (293 cells) (293-TBP cells). These mice showed severe hyperthyroidism in a manner very similar to that described above for mice immunized with the mouse TSHR or human TSHR, and exhibited significant weight loss, with average weight for treatment groups ranging from 20.6 to 21.67 g, while controls weighed 24.2 g. Early after onset of the disease, histopathological examination of thyroids showed enlargement of colloids and thinning of epithelial cells without inflammation. However, later during disease, focal necrosis and lymphocytic infiltration were apparent. Our results showed that conformationally intact ectodomain of TSHR is sufficient for disease induction. Availability of a reproducible model in which 100% of the animals develop disease should facilitate studies aimed at understanding the molecular pathogenesis of Graves' disease.  相似文献   

9.
Certain pathogens recruit host complement inhibitors such as factor H (fH) to evade the immune system. Microbial complement inhibitor-binding molecules can be promising vaccine targets by eliciting Abs that neutralize this microbial defense mechanism. One such Ag, meningococcal factor H-binding protein (fHbp), was used in clinical trials before the protein was discovered to bind fH. The potential effect of fH binding on vaccine immunogenicity had not been assessed in experimental animals because fHbp binds human fH specifically. In this study, we developed a human fH transgenic mouse model. Transgenic mice immunized with fHbp vaccine had 4- to 8-fold lower serum bactericidal Ab responses than those of control mice whose native fH did not bind the vaccine. In contrast, Ab responses were unimpaired in transgenic mice immunized with a control meningococcal group C polysaccharide-protein conjugate vaccine. In transgenic mice, immunization with an fH nonbinding mutant of fHbp elicited Abs with higher bactericidal activity than that of fHbp vaccination itself. Abs elicited by the mutant fHbp more effectively blocked fH binding to wild-type fHbp than Abs elicited by fHbp that bound fH. Thus, a mutant fHbp vaccine that does not bind fH but that retains immunogenicity is predicted to be superior in humans to an fHbp vaccine that binds human fH. In the case of mutant fHbp vaccination, the resultant Ab responses may be directed more at epitopes in or near the fH binding site, which result in greater complement-mediated serum bactericidal activity; these epitopes may be obscured when human fH is bound to the wild-type fHbp vaccine.  相似文献   

10.
Pemphigus vulgaris (PV) is an Ab-mediated autoimmune blistering disease of mucotaneous surfaces. Over 95% of the patients with PV express DR4 or DRw6, and the disease is characterized by the presence of autoantibodies directed against desmoglein 3 (Dsg 3), a protein expressed on keratinocytes. An appropriate animal model is required to understand immunoregulation and to address the role of immunogenetic components in the production of pathogenic Abs that are characteristic of PV. Therefore, we turned to the development of a mouse model. Four strains of female mice (BALB/c, DBA/1, SJL/J, and HRS/J) were screened for their ability to produce pathogenic anti-Dsg 3 Abs. We demonstrated that only BALB/c mice immunized with a full-length Dsg 3 can produce pathogenic Abs capable of causing acantholysis of human foreskin in culture and blistering in neonatal mice. This observation suggested that either H-2d or the BALB background contains the immunogenetic makeup necessary for the production of pathogenic anti-Dsg 3 Abs. No correlation was noted between a given isotype and the pathogenic potential of autoantibodies from different strains of mice. Similarly, the pattern of reactivity of Abs with a panel of 46 synthetic peptides that span the entire Dsg 3 failed to reveal any association between binding specificity and the pathogenic potential, and suggested that pathogenic Abs might recognize conformational epitopes. Moreover, our studies showed that the epitopes recognized by pathogenic Abs are contained within the extracellular Dsg 3.  相似文献   

11.
The thyrotropin receptor (TSHR) has a unique 50 residue (317-366) ectodomain insertion that sets it apart from other glycoprotein hormone receptors (GPHRs). Other ancient members of the leucine-rich repeat G protein-coupled receptor (GPCR) (LGR) family do exhibit ectodomain insertions of variable lengths and sequences. The TSHR-specific insert is digested, apparently spontaneously, to release the ectodomain (A-subunit) leaving the balance of the ectodomain attached to the serpentine (B-subunit). Despite concerted efforts for the last 12 years by many laboratories, the enzyme involved in TSHR cleavage has not been identified and a physiologic role for this process remains unclear. Several lines of evidence had suggested that the TSHR protease is likely a member of the a disintegrin and metalloprotease (ADAM) family of metalloproteases. We show here that the expression of ADAM10 was specific to the thyroid by specially designed DNA microarrays. We also show that TSH increases TSHR cleavage in a dose-dependent manner. To prove that ADAM10 is indeed the TSHR cleavage enzyme, we investigated the effect of TSH-induced cleavage by a peptide based on a motif (TSHR residues 334-349), shared with known ADAM10 substrates. TSH increased dose dependently TSHR ectodomain cleavage in the presence of wild-type peptide but not a scrambled control peptide. Interestingly, TSH increased the abundance of non-cleaved single chain receptor, as well higher molecular forms of the A-subunit, despite their enhancement of the appearance of the fully digested A-subunit. This TSH-related increase in TSHR digested forms was further increased by wild-type peptide. We have identified for the first time ADAM10 as the TSHR cleavage enzyme and shown that TSH regulates its activation.  相似文献   

12.
Development of an animal model of autoimmune thyroid eye disease   总被引:12,自引:0,他引:12  
In previous studies we have transferred thyroiditis to naive BALB/c and NOD mice with human thyrotropin (TSH) receptor (TSHR)-primed splenocytes. Because the TSHR has been implicated in the pathogenesis of thyroid eye disease (TED) we have examined the orbits of recipients of TSHR-primed T cells, generated using a TSHR fusion protein or by genetic immunization. In the NOD mice, 25 of 26 animals treated with TSHR-primed T cells developed thyroiditis with considerable follicular destruction, numerous activated and CD8+ T cells, and immunoreactivity for IFN-gamma. Thyroxine levels were reduced. Thyroiditis was not induced in controls. None of the NOD animals developed any orbital pathology. Thirty-five BALB/c mice received TSHR-primed spleen cells. Thyroiditis was induced in 60-100% and comprised activated T cells, B cells, and immunoreactivity for IL-4 and IL-10. Autoantibodies to the receptor were induced, including TSH binding inhibiting Igs. A total of 17 of 25 BALB/c orbits displayed changes consisting of accumulation of adipose tissue, edema caused by periodic acid Schiff-positive material, dissociation of the muscle fibers, the presence of TSHR immunoreactivity, and infiltration by lymphocytes and mast cells. No orbital changes or thyroiditis were observed in control BALB/c mice. We have induced orbital pathology having many parallels with human TED, only in BALB/c mice, suggesting that a Th2 autoimmune response to the TSHR may be a prerequisite for the development of TED.  相似文献   

13.
CTL together with anti-envelope Abs represent major effectors for viral clearance during hepatitis B virus (HBV) infection. The induction of strong cytotoxic and Ab responses against the envelope proteins after DNA-based immunization has been proposed as a promising therapeutic approach to mediate viral clearance in chronically infected patients. Here, we studied the CTL responses against previously described hepatitis B surface Ag (HBsAg)-HLA-A*0201-restricted epitopes after DNA-based immunization in HLA-A*0201 transgenic mice. The animal model used was Human Human D(b) (HHD) mice, which are deficient for mouse MHC class I molecules (beta(2)-microglobulin(-/-) D(b-/-)) and transgenic for a chimeric HLA-A*0201/D(b) molecule covalently bound to the human beta(2)-microglobulin (HHD(+/+)). Immunization of these mice with a DNA vector encoding the small and the middle HBV envelope proteins carrying HBsAg induced CTL responses against several epitopes in each animal. This study performed on a large number of animals described dominant epitopes with specific CTL induced in all animals and others with a weaker frequency of recognition. These results confirmed the relevance of the HHD transgenic mouse model in the assessment of vaccine constructs for human use. Moreover, genetic immunization of HLA-A2 transgenic mice generates IFN-gamma-secreting CD8(+) T lymphocytes specific for endogenously processed peptides and with recognition specificities similar to those described during self-limited infection in humans. This suggests that responses induced by DNA immunization could have the same immune potential as those developing during natural HBV infection in human patients.  相似文献   

14.
Absence of suitable mucosal adjuvants for humans prompted us to consider alternative vaccine designs for mucosal immunization. Because adenovirus is adept in binding to the respiratory epithelium, we tested the adenovirus 2 fiber protein (Ad2F) as a potential vaccine-targeting molecule to mediate vaccine uptake. The vaccine component (the host cell-binding domain to botulinum toxin (BoNT) serotype A) was genetically fused to Ad2F to enable epithelial binding. The binding domain for BoNT was selected because it lies within the immunodominant H chain as a beta-trefoil (Hcbetatre) structure; we hypothesize that induced neutralizing Abs should be protective. Mice were nasally immunized with the Hcbetatre or Hcbetatre-Ad2F, with or without cholera toxin (CT). Without CT, mice immunized with Hcbetatre produced weak secretory IgA (sIgA) and plasma IgG Ab response. Hcbetatre-Ad2F-immunized mice produced a sIgA response equivalent to mice coimmunized with CT. With CT, Hcbetatre-Ad2F-immunized mice showed a more rapid onset of sIgA and plasma IgG Ab responses that were supported by a mixed Th1/Th2 cells, as opposed to mostly Th2 cells by Hcbetatre-dosed mice. Mice immunized with adjuvanted Hcbetatre-Ad2F or Hcbetatre were protected against lethal BoNT serotype A challenge. Using a mouse neutralization assay, fecal Abs from Hcbetatre-Ad2F or Hcbetatre plus CT-dosed mice could confer protection. Parenteral immunization showed that the inclusion of Ad2F enhances anti-Hcbetatre Ab titers even in the absence of adjuvant. This study shows that the Hcbetatre structure can confer protective immunity and that use of Hcbetatre-Ad2F gives more rapid and sustained mucosal and plasma Ab responses.  相似文献   

15.
An experimental murine model of Graves' disease was used to produce monoclonal antibodies (mAbs) with thyroid stimulating activity. Two of these, IRI-SAb2 and IRI-SAb3, showed particularly high potency (in the low nanomolar range) and efficacy. IRI-SAb2 behaved as a full agonist of the human TSH receptor (TSHr), even when tested in physiological salt concentrations. Both IRI-SAb2 and IRI-SAb3 were displaced from the TSHr by autoantibodies from patients with Graves' disease or harboring thyroid-blocking antibodies, but not from control subjects or patients with Hashimoto thyroiditis. The epitopes of IRI-SAb2 and IRI-SAb3 were precisely mapped, at the amino acid level, to the amino-terminal portion of the concave portion of the horseshoe structure of TSHr ectodomain. They overlap closely with each other and, surprisingly, with the epitope of a mAb with blocking activity. When injected iv in mice, both mAbs caused biological and histological signs of hyperthyroidism. Unexpectedly, they also triggered an inflammatory response in the thyroid glands. Delineation of the conformational epitopes of these stimulating antibodies opens the way to the identification of the molecular mechanisms implicated in the activation of the TSHr.  相似文献   

16.
Abs to the prion protein (PrP) can protect against experimental prion infections, but efficient Ab responses are difficult to generate because PrP is expressed on many tissues and induces a strong tolerance. We previously showed that immunization of wild-type mice with PrP peptides and CpG oligodeoxynucleic acid overcomes tolerance and induces cellular and humoral responses to PrP. In this study, we compared Ab and T cell repertoires directed to PrP in wild-type and PrP knockout (Prnp o/o) C57BL/6 mice. Animals were immunized with mouse PrP-plasmid DNA or with 30-mer overlapping peptides either emulsified in CFA or CpG/IFA. In Prnp o/o mice, Abs raised by PrP-plasmid DNA immunization recognized only N-terminal PrP peptides; analyses of Ab responses after PrP peptide/CFA immunization allowed us to identify six distinct epitopes, five of which were also recognized by Abs raised by PrP peptides/CpG. By contrast, in wild-type mice, no Ab response was detected after PrP-plasmid DNA or peptide/CFA immunization. However, when using CpG, four C-terminal peptides induced Abs specific for distinct epitopes. Importantly, immune sera from Prnp o/o but not from wild-type mice bound cell surface PrP. Abs of IgG1 and IgG2b subclasses predominated in Prnp o/o mice while the strongest signals were for IgG2b in wild-type mice. Most anti-PrP Th cells were directed to a single epitope in both Prnp o/o and wild-type mice. We conclude that endogenous PrPC expression profoundly affects the Ab repertoire as B cells reactive for epitopes exposed on native PrPC are strongly tolerized. Implications for immunotherapy against prion diseases are discussed.  相似文献   

17.
Thyroid stimulating hormone (TSH) receptor (TSHR) antibodies (TRAb) are the hallmarks in serological diagnosis of Graves' disease (GD, autoimmune hyperthyroidism). In the 1980s, the first generation liquid-phase TRAb assay with detergent solubilized porcine TSHR was introduced into routine thyroid serology and proved to be highly specific for GD, albeit with moderate sensitivity. In the 1990 s, second generation solid-phase TRAb assays with immobilized porcine or recombinant human TSHR became available, and were clearly more sensitive for Graves' disease without loss of specificity. Recently, third generation TRAb assays have been developed, in which the human thyroid stimulating monoclonal antibody M22 replaces bovine TSH as the competing reagent for TRAb binding to TSHR. Again, an improvement in functional sensitivity was reported for this latest assay generation. To investigate the analytical (aas) and functional assay sensitivity (fas) over 3 generations of TRAb assays, pooled serum samples from patients with GD were measured 10-fold in different assay lots over a few months. The 20% inter-assay coefficients of variation (CV) were calculated and compared taking into account the different calibrations of the assay generations. The fas continuously increased from about 8 U/l of MRC B65/122 in liquid phase TRAb assays, to about 1.0 IU/l (NIBSC 90/672) in TSH based solid phase TRAb assays and to about 0.3 IU/l (NIBSC 90/672) in the M22 based TRAb assay finally. In conclusion, the fas of TRAb measurements has been improved continuously over the last 3 decades.  相似文献   

18.
Thyroid-stimulating hormone receptor (TSHR) plays a central role in regulating thyroid function and is targeted by IgGs in Graves' disease (GD-IgG). Whether TSHR is involved in the pathogenesis of thyroid-associated ophthalmopathy (TAO), the orbital manifestation of GD, remains uncertain. TSHR signaling overlaps with that of insulin-like grow factor 1 receptor (IGF-1R). GD-IgG can activate fibroblasts derived from donors with GD to synthesize T cell chemoattractants and hyaluronan, actions mediated through IGF-1R. In this study, we compare levels of IGF-1R and TSHR on the surfaces of TAO and control orbital fibroblasts and thyrocytes and explore the physical and functional relationship between the two receptors. TSHR levels are 11-fold higher on thyrocytes than on TAO or control fibroblasts. In contrast, IGF-1R levels are 3-fold higher on TAO vs control fibroblasts. In pull-down studies using fibroblasts, thyrocytes, and thyroid tissue, Abs directed specifically against either IGF-1Rbeta or TSHR bring both proteins out of solution. Moreover, IGF-1Rbeta and TSHR colocalize to the perinuclear and cytoplasmic compartments in fibroblasts and thyrocytes by confocal microscopy. Examination of orbital tissue from patients with TAO reveals similar colocalization to cell membranes. Treatment of primary thyrocytes with recombinant human TSH results in rapid ERK phosphorylation which can be blocked by an IGF-1R-blocking mAb. Our findings suggest that IGF-1R might mediate some TSH-provoked signaling. Furthermore, they indicate that TSHR levels on orbital fibroblasts are considerably lower than those on thyrocytes and that this receptor associates with IGF-1R in situ and together may comprise a functional complex in thyroid and orbital tissue.  相似文献   

19.
Immunization of amyloid precursor protein transgenic mice with fibrillar beta-amyloid (Abeta) prevents Alzheimer's disease (AD)-like neuropathology. The first immunotherapy clinical trial used fibrillar Abeta, containing the B and T cell self epitopes of Abeta, as the immunogen formulated with QS21 as the adjuvant in the vaccine. Unfortunately, the clinical trial was halted during the phase II stage when 6% of the participants developed meningoencephalitis. The cause of the meningoencephalitis in the patients that received the vaccine has not been definitively determined; however, analysis of two case reports from the AN-1792 vaccine trial suggest that the meningoencephalitis may have been caused by a T cell-mediated autoimmune response, whereas production of anti-Abeta Abs may have been therapeutic to the AD patients. Therefore, to reduce the risk of an adverse T cell-mediated immune response to Abeta immunotherapy we have designed a prototype epitope vaccine that contains the immunodominant B cell epitope of Abeta in tandem with the synthetic universal Th cell pan HLA DR epitope, pan HLA DR-binding peptide (PADRE). Importantly, the PADRE-Abeta(1-15) sequence lacks the T cell epitope of Abeta. Immunization of BALB/c mice with the PADRE-Abeta(1-15) epitope vaccine produced high titers of anti-Abeta Abs. Splenocytes from immunized mice showed robust T cell stimulation in response to peptides containing PADRE. However, splenocytes from immunized mice were not reactivated by the Abeta peptide. New preclinical trials in amyloid precursor protein transgenic mouse models may help to develop novel immunogen-adjuvant configurations with the potential to avoid the adverse events that occurred in the first clinical trial.  相似文献   

20.
The idiotypes of B cell lymphomas represent tumor-specific antigens. T cell responses induced by idiotype vaccination in vivo are directed predominantly against CDR peptides, whereas in vitro T cells also recognize framework-derived epitopes. To investigate the mechanisms regulating the specificity of idiotype-specific T cells, BALB/c or B10.D2 mice were immunized with mature dendritic cells loaded with H-2Kd-restricted peptides from influenza hemagglutinin, or from shared (J region) or unique (CDR3) structures of the A20 lymphoma idiotype. Antigen-specific T cells were induced in vivo by the CDR3 and influenza epitopes, but not by the J peptide. Gene expression profiling of splenic regulatory T cells revealed vaccination-induced Treg activation and proliferation. Treg activity involved J epitope-dependent IL-10 secretion and functional suppression of peptide-specific effector T cells. Vaccination-induced in vivo proliferation of transgenic hemagglutinin-specific T cells was suppressed by co-immunization with the J peptide and was restored in CD25-depleted animals. In conclusion, Treg induced by a shared idiotype epitope can systemically suppress T cell responses against idiotype-derived and immunodominant foreign epitopes in vivo. The results imply that tumor vaccines should avoid epitopes expressed by normal cells in the draining lymph node to achieve optimal anti-tumor efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号