首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented.  相似文献   

2.
We have generated transgenic mice that express green fluorescent protein (GFP) under the control of the mouse insulin I gene promoter (MIP). The MIP-GFP mice develop normally and are indistinguishable from control animals with respect to glucose tolerance and pancreatic insulin content. Histological studies showed that the MIP-GFP mice had normal islet architecture with coexpression of insulin and GFP in the beta-cells of all islets. We observed GFP expression in islets from embryonic day E13.5 through adulthood. Studies of beta-cell function revealed no difference in glucose-induced intracellular calcium mobilization between islets from transgenic and control animals. We prepared single-cell suspensions from both isolated islets and whole pancreas from MIP-GFP-transgenic mice and sorted the beta-cells by fluorescence-activated cell sorting based on their green fluorescence. These studies showed that 2.4 +/- 0.2% (n = 6) of the cells in the pancreas of newborn (P1) and 0.9 +/- 0.1% (n = 5) of 8-wk-old mice were beta-cells. The MIP-GFP-transgenic mouse may be a useful tool for studying beta-cell biology in normal and diabetic animals.  相似文献   

3.
4.
5.
A major goal for in vivo biology is to develop models which can express multiple colors of fluorescent proteins in order to image many processes simultaneously in real time. Towards this goal, the cyan fluorescent protein (CFP) nude mouse was developed by crossing non‐transgenic nude mice with the transgenic CK/ECFP mouse in which the β‐actin promoter drives expression of CFP in almost all tissues. In crosses between nu/nu CFP male mice and nu/+ CFP female mice, approximately 50% of the embryos fluoresced blue. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescent signals of all internal organs which vary in intensity. Orthotopic implantation of XPA‐1 human pancreatic cancer cells expressing red fluorescent protein (RFP); or green fluorescent protein (GFP) in the nucleus and RFP in the cytoplasm, was performed in female nude CFP mice. Color‐coded fluorescence imaging of these human pancreatic cancer cells implanted into the bright blue fluorescent pancreas of the CFP nude mouse afforded novel insight into the interaction of the pancreatic tumor and the normal pancreas, in particular the strong desmoplastic reaction of the tumor. The naturally enhanced blue fluorescence of the pancreas in the CFP mouse serves as an ideal background for color‐coded imaging of the interaction of implanted cancer cells and the host. The CFP nude mouse will provide unique understanding of the critical interplay between the cancer cells and their microenvironment. J. Cell. Biochem. 107: 328–334, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.  相似文献   

8.
Current knowledge about developmental processes in complex organisms has relied almost exclusively on analyses of fixed specimens. However, organ growth is highly dynamic, and visualization of such dynamic processes, e.g., real-time tracking of cell movement and tissue morphogenesis, is becoming increasingly important. Here, we use live imaging to investigate expansion of the embryonic pancreatic epithelium in mouse. Using time-lapse imaging of tissue explants in culture, fluorescently labeled pancreatic epithelium was found to undergo significant expansion accompanied by branching. Quantification of the real-time imaging data revealed lateral branching as the predominant mode of morphogenesis during epithelial expansion. Live imaging also allowed documentation of dynamic beta-cell formation and migration. During in vitro growth, appearance of newly formed beta-cells was visualized using pancreatic explants from MIP-GFP transgenic animals. Migration and clustering of beta-cells were recorded for the first time using live imaging. Total beta-cell mass and concordant aggregation increased during the time of imaging, demonstrating that cells were clustering to form "pre-islets". Finally, inhibition of Hedgehog signaling in explant cultures led to a dramatic increase in total beta-cell mass, demonstrating application of the system in investigating roles of critical embryonic signaling pathways in pancreas development including beta-cell expansion. Thus, pancreas growth in vitro can be documented by live imaging, allowing visualization of the developing pancreas in real-time.  相似文献   

9.
The origin of insulin-expressing beta-cells in the adult mammalian pancreas is controversial. During normal tissue turnover and following injury, beta-cells may be replaced by duplication of existing beta-cells.1 However, an alternative source of beta-cells has recently been proposed based on neogenesis from a Ngn3-positive population present in regenerating pancreatic ducts.2 The appearance of beta-cells from Ngn3-positive progenitors is reminiscent of normal pancreas development, and Ngn3-expressing cells isolated from regenerating pancreas can generate the full repertoire of endocrine phenotypes. The isolation and characterisation of the equivalent human progenitors may represent a significant step forward in the hunt for a cure for diabetes.  相似文献   

10.
11.
12.
The aim of this study was to examine postnatal islet and beta-cell expansion in healthy female control mice and its disturbances in diabetic GIPR(dn) transgenic mice, which exhibit an early reduction of beta-cell mass. Pancreata of female control and GIPR(dn) transgenic mice, aged 10, 45, 90 and 180 days were examined, using state-of-the-art quantitative-stereological methods. Total islet and beta-cell volumes, as well as their absolute numbers increased significantly until 90 days in control mice, and remained stable thereafter. The mean islet volumes of controls also increased slightly but significantly between 10 and 45 days of age, and then remained stable until 180 days. The total volume of isolated beta-cells, an indicator of islet neogenesis, and the number of proliferating (BrdU-positive) islet cells were highest in 10-day-old controls and declined significantly between 10 and 45 days. In GIPR(dn) transgenic mice, the numbers of islets and beta-cells were significantly reduced from 10 days of age onwards vs. controls, and no postnatal expansion of total islet and beta-cell volumes occurred due to a reduction in islet neogenesis whereas early islet-cell proliferation and apoptosis were unchanged as compared to control mice. Insulin secretion in response to pharmacological doses of GIP was preserved in GIPR(dn) transgenic mice, and serum insulin to pancreatic insulin content in response to GLP-1 and arginine was significantly higher in GIPR(dn) transgenic mice vs. controls. We could show that the increase in islet number is mainly responsible for expansion of islet and beta-cell mass in healthy control mice. GIPR(dn) transgenic mice show a disturbed expansion of the endocrine pancreas, due to perturbed islet neogenesis.  相似文献   

13.
Metastasis is a frequent and lethal complication of cancer. Vascular endothelial growth factor-C (VEGF-C) is a recently described lymphangiogenic factor. Increased expression of VEGF-C in primary tumours correlates with dissemination of tumour cells to regional lymph nodes. However, a direct role for VEGF-C in tumour lymphangiogenesis and subsequent metastasis has yet to be demonstrated. Here we report the establishment of transgenic mice in which VEGF-C expression, driven by the rat insulin promoter (Rip), is targeted to beta-cells of the endocrine pancreas. In contrast to wild-type mice, which lack peri-insular lymphatics, RipVEGF-C transgenics develop an extensive network of lymphatics around the islets of Langerhans. These mice were crossed with Rip1Tag2 mice, which develop pancreatic beta-cell tumours that are neither lymphangiogenic nor metastatic. Double-transgenic mice formed tumours surrounded by well developed lymphatics, which frequently contained tumour cell masses of beta-cell origin. These mice frequently developed pancreatic lymph node metastases. Our findings demonstrate that VEGF-C-induced lymphangiogenesis mediates tumour cell dissemination and the formation of lymph node metastases.  相似文献   

14.
15.
The basic helix-loop-helix protein Neurogenin3 specifies precursor cells of the endocrine pancreas during embryonic development, and is thought to be absent postnatally. We have studied Ngn3 expression during in vitro generation of beta-cells from adult rat exocrine pancreas tissue treated with epidermal growth factor and leukaemia inhibitory factor. This treatment induced a transient expression of both Ngn3 and its upstream activator hepatocyte nuclear factor 6. Inhibition of EGF and LIF signalling by pharmacological antagonists of the JAK2/STAT3 pathway, or knockdown of Ngn3 by RNA interference prevented the generation of new insulin-positive cells. This study demonstrates that in vitro growth factor stimulation can induce recapitulation of an embryonic endocrine differentiation pathway in adult dedifferentiated exocrine cells. This could prove to be important for understanding the mechanism of beta-cell regeneration and for therapeutic ex vivo neogenesis of beta cells.  相似文献   

16.
17.
The FRK tyrosine kinase has previously been shown to transduce beta-cell cytotoxic signals in response to cytokines and streptozotocin and to promote beta-cell proliferation and an increased beta-cell mass. We therefore aimed to further evaluate the effects of overexpression of FRK tyrosine kinase in beta-cells. A transgenic mouse expressing kinase-active FRK under control of the insulin promoter (RIP-FRK) was studied with regard to islet endocrine function and vascular morphology. Mild glucose intolerance develops in RIP-FRK male mice of at least 4 mo of age. This effect is accompanied by reduced glucose-stimulated insulin secretion in vivo and reduced second-phase insulin secretion in response to glucose and arginine upon pancreas perfusion. Islets isolated from the FRK transgenic mice display a glucose-induced insulin secretory response in vitro similar to that of control islets. However, islet blood flow per islet volume is decreased in the FRK transgenic mice. These mice also exhibit a reduced islet capillary lumen diameter as shown by electron microscopy. Total body weight and pancreas weight are not significantly affected, but the beta-cell mass is increased. The data suggest that long-term expression of active FRK in beta-cells causes an in vivo insulin-secretory defect, which may be the consequence of islet vascular abnormalities that yield a decreased islet blood flow.  相似文献   

18.
Epithelial-mesenchymal interactions are essential for growth, differentiation, and regeneration of exocrine and endocrine cells in the pancreas. The keratinocyte growth factor (KGF) is derived from mesenchyme and has been shown to promote epithelial cell differentiation and proliferation in a paracrine fashion. Here, we have examined the effect of ectopic expression of KGF on pancreatic differentiation and proliferation in transgenic mice by using the proximal elastase promoter. KGF transgenic mice were generated following standard procedures and analyzed by histology, morphometry, immunohistochemistry, Western blot analysis, and glucose tolerance testing. In KGF transgenic mice, the number of islets, the average size of islets, and the relation of endocrine to exocrine tissue are increased compared with littermate controls. An expansion of the beta-cell population is responsible for the increase in the endocrine compartment. Ectopic expression of KGF results in proliferation of beta-cells and pancreatic duct cells most likely through activation of the protein kinase B (PKB)/Akt signaling pathway. Glucose tolerance and insulin secretion are impaired in transgenic animals. These results provide evidence that ectopic expression of KGF in acinar cells promotes the expansion of the beta-cell lineage in vivo through activation of the PKB/Akt pathway. Furthermore, the observed phenotype demonstrates that an increase in the beta-cell compartment does not necessarily result in an improved glucose tolerance in vivo.  相似文献   

19.
Tracing changes of specific cell populations in health and disease is an important goal of biomedical research. The process of monitoring pancreatic beta-cell proliferation and islet growth is particularly challenging. We have developed a method to capture the distribution of beta-cells in the intact pancreas of transgenic mice with fluorescence-tagged beta-cells with a macro written for ImageJ (rsb.info.nih.gov/ij/). Following pancreatic dissection and tissue clearing, the entire pancreas is captured as a virtual slice, after which the GFP-tagged beta-cells are examined. The analysis includes the quantification of total beta-cell area, islet number and size distribution with reference to specific parameters and locations for each islet and for small clusters of beta-cells. The entire distribution of islets can be plotted in three dimensions, and the information from the distribution on the size and shape of each islet allows a quantitative and qualitative comparison of changes in overall beta-cell area at a glance.Download video file.(98M, mp4)  相似文献   

20.

Background

Pancreatic beta-cells proliferate following administration of the beta-cell toxin streptozotocin. Defining the conditions that promote beta-cell proliferation could benefit patients with diabetes. We have investigated the effect of insulin treatment on pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice, and, in addition, report on a new approach to quantify beta-cell regeneration in vivo.

Methodology/Principal Findings

Streptozotocin-induced diabetic were treated with either syngeneic islets transplanted under the kidney capsule or subcutaneous insulin implants. After either 60 or 120 days of insulin treatment, the islet transplant or insulin implant were removed and blood glucose levels monitored for 30 days. The results showed that both islet transplants and insulin implants restored normoglycemia in the 60 and 120 day treated animals. However, only the 120-day islet and insulin implant groups maintained euglycemia (<200 mg/dl) following discontinuation of insulin treatment. The beta-cell was significantly increased in all the 120 day insulin-treated groups (insulin implant, 0.69±0.23 mg; and islet transplant, 0.91±0.23 mg) compared non-diabetic control mice (1.54±0.25 mg). We also show that we can use bioluminescent imaging to monitor beta-cell regeneration in living MIP-luc transgenic mice.

Conclusions/Significance

The results show that insulin treatment can promote beta-cell regeneration. Moreover, the extent of restoration of beta-cell function and mass depend on the length of treatment period and overall level of glycemic control with better control being associated with improved recovery. Finally, real-time bioluminescent imaging can be used to monitor beta-cell recovery in living MIP-luc transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号