首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

2.
Apoptosis causes characteristic morphological changes in cells, including membrane blebbing, cell detachment from the extracellular matrix, and loss of cell-cell contacts. We investigated the changes in focal adhesion proteins during etoposide-induced apoptosis in Rat-1 cells and found that during apoptosis, p130cas (Crk-associated substrate [Cas]) is cleaved by caspase-3. Sequence analysis showed that Cas contains 10 DXXD consensus sites preferred by caspase-3. We identified two of these sites (DVPD(416)G and DSPD(748)G) in vitro, and point mutations substituting the Asp of DVPD(416)G and DSPD(748)G with Glu blocked caspase-3-mediated cleavage. Cleavage at DVPD(416)G generated a 74-kDa fragment, which was in turn cleaved at DSPD(748)G, yielding 47- and 31-kDa fragments. Immunofluorescence microscopy revealed well-developed focal adhesion sites in control cells that dramatically declined in number in etoposide-treated cells. Cas cleavage correlated temporally with the onset of apoptosis and coincided with the loss of p125FAK (focal adhesion kinase [FAK]) from focal adhesion sites and the attenuation of Cas-paxillin interactions. Considering that Cas associates with FAK, paxillin, and other molecules involved in the integrin signaling pathway, these results suggest that caspase-mediated cleavage of Cas contributes to the disassembly of focal adhesion complexes and interrupts survival signals from the extracellular matrix.  相似文献   

3.
We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-delta (PKCdelta) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKCdelta activity. To understand the function of activated PKCdelta in apoptosis, we have used the PKCdelta-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKCdelta also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKCdelta cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKCdelta may be required for cleavage. PKCalpha and PKCbeta1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with G?6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKCdelta is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

4.
Decreased phosphorylation of focal adhesion kinase and paxillin is associated with loss of focal adhesions and stress fibers and precedes the onset of apoptosis (van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The cortical actin cytoskeletal network is also lost during apoptosis, yet little is known about the temporal relationship between altered phosphorylation of proteins that are critical in the regulation of this network and their potential cleavage by caspases during apoptosis. Adducins are central in the cortical actin network organization. Cisplatin caused apoptosis of renal proximal tubular epithelial cells, which was associated with the cleavage of alpha-adducin into a 74-kDa fragment; this was blocked by a general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk). Hemagglutinin-tagged human alpha-adducin was cleaved into a similar 74-kDa fragment by caspase-3 in vitro but not by caspase-6 or -7. Asp-Arg-Val-Asp(29)-Glu, Asp-Ile-Val-Asp(208)-Arg, and Asp-Asp-Ser-Asp(633)-Ala were identified as the principal caspase-3 cleavage sites; Asp-Asp-Ser-Asp(633)-Ala was key in the formation of the 74-kDa fragment. Cisplatin also caused an increased phosphorylation of alpha-adducin and gamma-adducin in the MARCKS domain that preceded alpha-adducin cleavage and was associated with loss of adducins from adherens junctions; this was not affected by z-VAD-fmk. In conclusion, the data support a model in which increased phosphorylation of alpha-adducin due to cisplatin leads to dissociation from the cytoskeleton, a situation rendered irreversible by caspase-3-mediated cleavage of alpha-adducin at Asp-Asp-Ser-Asp(633)-Ala.  相似文献   

5.
6.
Immunofluorescence microscopy revealed the rearrangement and gradual dissociation of paxillin from focal adhesion sites during apoptosis. In vitro, cleavage of paxillin by caspase-3 generated a 42-kDa fragment, among other products, while cleavage by calpain generated a different set of fragments. In Rat-1 cells, cleavage of paxillin by caspase-3 was suppressed by zVAD-fmk or zDEVD-cmk, making caspase-3 a likely executioner during etoposide-induced apoptosis. In contrast, the cleavage of paxillin and p130cas in apoptotic L929 cells was blocked by calpain-specific inhibitors, which also reduced the death rate by 23 to 44%. Therefore, The disassembly and degradation of p130cas and paxillin during apoptosis may controlled by both caspases and calpains, depending upon their cellular contexts. Our findings also suggest that focal adhesion proteins paxillin and p130cas take part in integrin-mediated signaling for cell survival, and that their cleavage by caspase and/or calpain may not only disrupt focal adhesion complexes, but may also impede cell survival signaling.  相似文献   

7.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

8.
We examined the possibility that p38 mitogen-activated protein kinase and caspase-3 would be activated for execution of apoptosis and excitotoxicity, the two major types of neuronal death underlying hypoxicischemic and neurodegenerative diseases. Mouse cortical cell cultures underwent widespread neuronal apoptosis 24 h following exposure to 10-30 nM calyculin A, a selective inhibitor of Ser/Thr phosphatase I and IIA. Activity of p38 was increased 2-4 h following exposure to 30 nM calyculin A. Addition of 3-10 microM PD169316, a selective p38 inhibitor, partially attenuated calyculin A neurotoxicity. Activity of caspase-3-like proteases was increased in cortical cell cultures exposed to 30 nM calyculin A for 8-16 h as shown by cleavage of DEVD-p-nitroanilide and phosphorylated tau. Proteolysis of tau was completely blocked by addition of 100 microM N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), a broad-spectrum inhibitor of caspases, but incompletely by 10 microM PD169316. Calyculin A neurotoxicity was partially sensitive to 100 microM z-VAD-fmk. Cotreatment with 10 microM PD169316 and 100 microM z-VAD-fmk showed additive neuroprotection against calyculin A. Neither PD169316 nor z-VAD-fmk showed a beneficial effect against excitotoxic neuronal necrosis induced by exposure to 20 microM NMDA. Thus, caspase-3-like proteases and p38 likely contribute to calyculin A-induced neuronal apoptosis but not NMDA-induced neuronal necrosis.  相似文献   

9.
Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis.  相似文献   

10.
Altered cellular adhesion and apoptotic signaling in cardiac remodeling requires coordinated regulation of multiple constituent proteins that comprise cytoskeletal focal adhesions. One such protein activated by cardiac remodeling is related adhesion focal tyrosine kinase (RAFTK, also known as pyk2). Adenoviral-mediated expression of RAFTK in neonatal rat cardiomyocytes involves concurrent increases in phosphorylation of Src, c-Jun N-terminal kinase, and p38 leading to characteristic apoptotic changes including cleavage of poly(ADP-ribose) polymerase, caspase-3 activation, and increased DNA laddering. DNA laddering was decreased by mutation of the Tyr(402) Src-binding site in RAFTK, suggesting a central role for Src activity in apoptotic cell death that was confirmed by adenoviral-mediated Src expression. Multiple apoptotic signaling cascades are recruited by RAFTK as demonstrated by prevention of apoptosis using caspase-3 inhibitor IV (caspase-3 specific inhibitor), PP2 (Src-specific kinase inhibitor), or Csk (cellular negative regulator for Src), as well as dominant negative constructs for p38beta or MKP-1. These RAFTK-mediated phenotypic characteristics are prevented by concurrent expression of wild-type or a phosphorylation-deficient paxillin mutated at Tyr(31) and Tyr(118). Wild-type or mutant paxillin protein accumulation in the cytoplasm has no overt effect upon cell structure, but paxillin accumulation prevents losses of myofibril organization as well as focal adhesion kinase, vinculin, and paxillin protein levels mediated by RAFTK. Apoptotic signaling cascade inhibition by paxillin indicates interruption of signaling proximal to but downstream of RAFTK activity. Chronic RAFTK activation in cardiac remodeling may represent a maladaptive reactive response that can be modulated by paxillin, opening up novel possibilities for inhibition of cardiomyocyte apoptosis and structural degeneration in heart failure.  相似文献   

11.
Focal adhesion kinase (FAK) has been implicated to play a role in suppression of apoptosis. In this study, we have demonstrated that UV irradiation induced cleavage of FAK and two of its interacting proteins Src and p130(Cas) in Madin-Darby canine kidney cells, concomitant with an increase in cell death. The cleavage of these proteins upon UV irradiation was completely inhibited by ZVAD-FMK, a broad range inhibitor of caspases, and apparently delayed by Bcl2 overexpression. To examine if FAK plays a role in suppressing UV-induced apoptosis, stable Madin-Darby canine kidney cell lines overexpressing FAK were established. Our results showed that a marked (30-40%) increase in cell survival upon UV irradiation was achieved by this strategy. In our efforts to determine the mechanism by which FAK transduces survival signals to the downstream, we found that a FAK mutant deficient in binding to phosphatidylinositol 3-kinase failed to promote cell survival. Moreover, the expression of the Src homology 3 domain of p130(Cas), which competed with endogenous p130(Cas) for FAK binding, abrogated the FAK-promoted cell survival. Together, these results suggest that the integrity of FAK and its binding to phosphatidylinositol 3-kinase and p130(Cas) are required for FAK to exert its antiapoptotic function.  相似文献   

12.
Because cytoskeletal actin is regulated, in part, by Rho, and because Rho and caspases are involved in apoptosis, we sought to determine whether there was an association between RhoB and caspase-2. A RhoB-caspase-2 association was consistently demonstrated in neonatal mouse cardiomyocytes with Western Blotting, either after immunoprecipitation with RhoB followed by immunoblotting with caspase-2, or in reciprocal experiments after immuno precipitation with caspase-2 and immunoblotting with RhoB (n = 14). Although the RhoB-caspase-2 complex was constitutively present, the link between RhoB and caspase-2 may be operative in apoptosis because the HMG-CoA reductase inhibitor lovastatin increased the RhoB-caspase complex, especially in the nuclear fraction of the cell, with a peak occurrence 2 h after treatment. This association was unaffected by the caspase-2 inhibitor zVDVAD. Lovastatin produced apoptosis that was accompanied by an activation of caspase-2, as demonstrated by its immunohistochemistry and by the fact that the caspase-2 inhibitor zVDVAD reduced lovastatin-induced apoptosis. Lovastatin induced dramatic changes in cell morphology and a reduction in F-actin. Immunoblotting for actin suggests that lovastatin does not induce a degradation of the actin molecule, but rather affects filamentous F-actin. Caspase-2 inhibition with zVDVAD reduced lovastatin-induced alteration in cytoskeletal F-actin. The Rho inhibitor, Clostridium difficile toxin B, blunted the ability of lovastatin to induce apoptosis. In summary, these data show a previously unrecognized association between RhoB and caspase-2 in the cytosolic and nuclear fractions, which has ramifications for processes regulated by RhoB and caspase-2, including apoptosis.  相似文献   

13.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

14.
Treatment of cultured bovine pulmonary endothelial cells (BPAEC) with adenosine (Ado) alone or in combination with homocysteine (Hc) leads to disruption of focal adhesion complexes, caspase-dependent degradation of components of focal adhesion complexes, and subsequent apoptosis. Endothelial cells transiently overexpressing paxillin or p130(Cas) cDNAs underwent Ado-Hc-induced apoptosis to an extent similar to that of cells transfected with vector alone. However, overexpression of focal adhesion kinase (FAK) cDNA blunted Ado-Hc-induced apoptosis. FAK constructs lacking the central catalytic domain or containing a point mutation, rendering the catalytic domain enzymatically inactive, did not provide protection from apoptosis. Constructs containing a mutation in the major autophosphorylation site (tyrosine-397) similarly did not prevent cell death. A FAK mutant in amino acid 395, deficient in phosphatidylinositol 3-kinase (PI 3-kinase) binding, was not able to blunt apoptosis. Finally, overexpression of FAK did not provide protection from apoptosis in the presence of LY-294002, a PI 3-kinase inhibitor. Taken together, these data suggest that the survival signals mediated by overexpression of FAK in response to Ado-Hc-induced apoptosis require a PI 3-kinase-dependent pathway.  相似文献   

15.
Earlier studies showed that the oxidant menadione (MD) induces apoptosis in certain cells and also has anticancer effects. Most of these studies emphasized the role of the mitochondria in this process. However, the engagement of other organelles is less known. Particularly, the role of lysosomes and their proteolytic system, which participates in apoptotic cell death, is still unclear. The aim of this study was to investigate the role of lysosomal cathepsins on molecular signaling in MD-induced apoptosis in U937 cells. MD treatment induced translocation of cysteine cathepsins B, C, and S, and aspartic cathepsin D. Once in the cytosol, some cathepsins cleaved the proapoptotic molecule, Bid, in a process that was completely prevented by E64d, a general inhibitor of cysteine cathepsins, and partially prevented by the pancaspase inhibitor, z-VAD-fmk. Upon loss of the mitochondrial membrane potential, apoptosome activation led to caspase-9 processing, activation of caspase-3-like caspases, and poly (ADP-ribose) polymerase cleavage. Notably, the endogenous protein inhibitor, stefin B, was degraded by cathepsin D and caspases. This process was prevented by z-VAD-fmk, and partially by pepstatin A-penetratin. These findings suggest that the cleaved Bid protein acts as an amplifier of apoptotic signaling through mitochondria, thus enhancing the activity of cysteine cathepsins following stefin B degradation.  相似文献   

16.
Proteases belonging to the caspase family play a crucial role in apoptotic processes. Identification of protein cleavage specific to apoptosis may therefore provide further information about the mechanisms of apoptosis. In this study, apoptosis and necrosis were induced in cells of the human colon cancer cell lines, WiDr and DLD-1, and the resulting protein cleavage patterns investigated for beta-catenin. beta-Catenin was detected as a 92 kDa protein in control viable cells, while 65-72 kDa beta-catenin cleavage fragments were characteristically observed in apoptotic cells. These fragments were not observed in necrotic cell death. Similar apoptosis-specific beta-catenin cleavage was also demonstrated in the rat hepatoma cell line McA-RH7777, suggesting that the beta-catenin cleavage is a common event in apoptosis in various cell types. The formation of 65-72 kDa beta-catenin cleavage fragments was completely prevented by a caspase-1 inhibitor Z-VAD-CH2F and a caspase-3 inhibitor Z-DEVD-CH2F, indicating that the cleavage is associated with caspase-dependent process. Since beta-catenin is implicated in cell adhesion and signal transduction, these findings may suggest various possible roles of beta-catenin degradation in the dramatic cytoskeletal and morphological changes, as well as signaling events that accompany apoptosis.  相似文献   

17.
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.  相似文献   

18.
Protein kinase Cdelta (PKCdelta) is involved in the apoptosis of various cells in response to diverse stimuli. In this study, we characterized the role of PKCdelta in the apoptosis of C6 glioma cells in response to etoposide. We found that etoposide induced apoptosis in the C6 cells within 24 to 48 h and arrested the cells in the G(1)/S phase of the cell cycle. Overexpression of PKCdelta increased the apoptotic effect induced by etoposide, whereas the PKCdelta selective inhibitor rottlerin and the PKCdelta dominant-negative mutant K376R reduced this effect compared to control cells. Etoposide-induced tyrosine phosphorylation of PKCdelta and its translocation to the nucleus within 3 h was followed by caspase-dependent cleavage of the enzyme. Using PKC chimeras, we found that both the regulatory and catalytic domains of PKCdelta were necessary for its apoptotic effect. The role of tyrosine phosphorylation of PKCdelta in the effects of etoposide was examined using cells overexpressing a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). These cells exhibited decreased apoptosis in response to etoposide compared to cells overexpressing PKCdelta. Likewise, activation of caspase 3 and the cleavage of the PKCdelta5 mutant were significantly lower in cells overexpressing PKCdelta5. Using mutants of PKCdelta altered at individual tyrosine residues, we identified tyrosine 64 and tyrosine 187 as important phosphorylation sites in the apoptotic effect induced by etoposide. Our results suggest a role of PKCdelta in the apoptosis induced by etoposide and implicate tyrosine phosphorylation of PKCdelta as an important regulator of this effect.  相似文献   

19.
Adenosine and/or homocysteine causes endothelial cell apoptosis, a mechanism requiring protein tyrosine phosphatase (PTPase) activity. We investigated the role of focal adhesion contact disruption in adenosine-homocysteine endothelial cell apoptosis. Analysis of focal adhesion kinase (FAK), paxillin, and vinculin demonstrated disruption of focal adhesion complexes after 4 h of treatment with adenosine-homocysteine followed by caspase-induced proteolysis of FAK, paxillin, and p130(CAS). No significant changes were noted in tyrosine phosphorylation of FAK or paxillin. Pretreatment with the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone prevented adenosine-homocysteine-induced DNA fragmentation and FAK, paxillin, and p130(CAS) proteolysis. Asp-Glu-Val-Asp-ase activity was detectable in endothelial cells after 4 h of treatment with adenosine-homocysteine. The PTPase inhibitor sodium orthovanadate did not prevent endothelial cell retraction or FAK, paxillin, or vinculin redistribution. Sodium orthovanadate did block adenosine-homocysteine-induced FAK, paxillin, and p130(CAS) proteolysis and Asp-Glu-Val-Asp-ase activity. Thus disruption of focal adhesion contacts and caspase-induced degradation of focal adhesion contact proteins occurs in adenosine-homocysteine endothelial cell apoptosis. Focal adhesion contact disruption induced by adenosine-homocysteine is independent of PTPase or caspase activation. These studies demonstrate that disruption of focal adhesion contacts is an early, but not an irrevocable, event in endothelial cell apoptosis.  相似文献   

20.
Motexafin gadolinium (MGd, Xcytrin®) is a tumor-localizing redox mediator that catalyzes the oxidation of intracellular reducing molecules including NADPH, ascorbate, protein and non-protein thiols, generating reactive oxygen species (ROS). MGd localizes to tumors and cooperates with radiation and chemotherapy to kill tumor cells in tissue culture and animal models. In this report, we demonstrate that MGd triggers the mitochondrial apoptotic pathway in the HF-1 lymphoma cell line as determined by loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, activation of caspase-9 prior to caspase-8, cleavage of PARP and annexin V binding. There was minimal effect on MGd-induced apoptosis by the caspase inhibitor z-VAD-fmk, even though caspase-3 activity (as measured by DEVD-cleavage) was completely inhibited. However, MGd-induced apoptosis was reduced to baseline levels by the more potent caspase inhibitor Q-VD-OPh, demonstrating that MGd-induced apoptosis is indeed caspase-dependent. Apoptosis induced by dexamethasone, doxorubicin and etoposide (mediated through the mitochondrial pathway) was also more sensitive to inhibition by Q-VD-OPh than z-VAD-fmk. Our results demonstrating differential sensitivity of drug-induced apoptosis to caspase inhibitors suggest that the term “caspase-independent apoptosis” cannot be solely defined as apoptosis that is not inhibited by z-VAD-fmk as has been utilized in some published studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号