首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin-associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1-day-old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1-to 22-day-old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1- and 15-day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15-day cord overwhelmed permissive or growth promoting molecules in membranes from 1-day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth.  相似文献   

2.
Profuse sprouting of leech neurons occurs in culture when they are plated on a substrate consisting of laminin molecules extracted from extracellular matrix that surrounds the central nervous system (CNS). To assess the role of laminin as a potential growth-promoting molecule in the animal, its distribution was compared in intact and regenerating CNS by light and electronmicroscopy, after it had been labelled with an anti-leech-laminin monoclonal antibody (206) and conjugated second antibodies. In frozen sections and electron micrographs of normal leeches the label was restricted to the connective-tissue capsule surrounding the connectives that link ganglia. Immediately after the connectives had been crushed the normal structure was disrupted but laminin remained in place. Two days after the crush, axons began to sprout vigorously and microglial cells accumulated in the lesion. At the same time, labelled laminin molecules were no longer restricted to the basement membrane but appeared within the connectives in the regions of neurite outgrowth. The distribution of laminin at these new sites within the CNS was punctate at two days, but changed over the following two weeks: the laminin became aggregated as condensed streaks running longitudinally within the connectives beyond the lesion. The close association of regenerating axons with laminin suggests that it may promote axonal growth in the CNS of the animal as in culture.  相似文献   

3.
K S O'Shea  L H Liu  V M Dixit 《Neuron》1991,7(2):231-237
The ability of thrombospondin (TSP), an extracellular matrix glycoprotein, and two proteolytic fragments to support adhesion and neurite outgrowth from embryonic dorsal root ganglia, spinal cord neurons, and PC12 cells was examined. Anti-TSP antibodies or a synthetic peptide (GRGDS) containing an RGD cell-binding region was also added to cells plated on TSP. TSP and its 140 kd fragment were more efficient than laminin controls in supporting adhesion. Neurites formed on laminin, on varying concentrations of TSP, and particularly the 140 kd fragment. The amino-terminal heparin-binding domain supported little adhesion and outgrowth. Both adhesion and process outgrowth on TSP were inhibited by addition of anti-TSP antibodies, but not GRGDS.  相似文献   

4.
As neurons grow to their targets their processes elongate, branch and form specialized endings into which are inserted appropriate ion channels. Our aim has been to analyse the role of the extracellular matrix molecules laminin and tenascin in inducing growth and in determining the form and physiological properties of growing neurites. A preparation in which development and regeneration can be followed at the cellular and molecular level in the animal and in tissue culture is the central nervous system (CNS) of the leech. In leech extracellular matrix (ECM) both laminin and tenascin are present; the molecules are structurally similar but not identical to their vertebrate counterparts. Tenascin extracted from leech ECM shows a typical hexabrachial structure whereas laminin shows a typical cruciform structure in rotary shadowed preparations. Leech laminin purified by means of a monoclonal antibody is a molecule of about 1000 kDa, with a polypeptide composition of 340, 200, 180 and 160 kDa. Substrates that contain tenascin or laminin produce rapid and reliable outgrowth of neurites by identified cells. A remarkable finding is that the outgrowth pattern produced by an individual neuron depends in part on its identity, in part on the substrate upon which it is placed. For example, a Retzius cell grows in a quite different configuration and far more rapidly on laminin substrate than does another type of neuron containing the same transmitter (serotonin); and the pattern of outgrowth of the Retzius cell is different on laminin and on the plant lectin Con A (concanavalin A). Thus Con A induces the growth of processes that are shorter, thicker, more curved and contain fewer calcium channels than those grown on laminin. To determine whether laminin can also influence neurite outgrowth in the animal, immunocytological techniques have been used to follow its distribution in the extracellular matrix of normal, developing and regenerating leech CNS. In adult leeches neuronal processes in the CNS are not in contact with laminin which is confined to the surrounding extracellular matrix. In embryos however, laminin staining appears between ganglionic primordia along the pathways that neurons will follow. Similarly, after injury to the adult CNS, laminin accumulates at the very sites at which sprouting and regeneration begin. How the laminin becomes redistributed to appear in the region of injury has not yet been established. Together these findings suggest a key role for laminin and for other extracellular matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin‐associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1‐day‐old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1‐to 22‐day‐old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1‐ and 15‐day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15‐day cord overwhelmed permissive or growth promoting molecules in membranes from 1‐day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 393–406, 1999  相似文献   

6.
Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2(+)-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CG) neurons. beta 1-class integrin ECM receptor heterodimers function less prominently in E8 and not at all in E14 neurite outgrowth on astrocytes. The lack of effect of integrin beta 1 antibodies on E14 neurite outgrowth reflects an apparent loss of integrin function, as assayed by E14 neuronal attachment and process outgrowth on laminin. N-CAM appeared not to be required for neurite outgrowth by either E8 or E14 neurons. Since N-cadherin and integrin beta 1 antibodies together virtually eliminated E8 CG neurite outgrowth on cultured astrocytes, these two neuronal receptors are probably important in regulating axon growth on astroglia in vivo.  相似文献   

7.
The role of cell adhesion molecules in neurite outgrowth on Müller cells   总被引:3,自引:0,他引:3  
The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.  相似文献   

8.
We have isolated a nonneuronal cell line from Xenopus retinal neuroepithelium (XR1 cell line). On the basis of immunocytochemical characterization using monoclonal antibodies generated in our laboratory as well as several other glial-specific antibodies, we have established that the XR1 cells are derived from embryonic astroglia. A monolayer of XR1 cells serves as an excellent substrate upon which embryonic retinal explants attach and elaborate neurites. This neurite outgrowth promoting activity appears not to be secreted into the medium, as medium conditioned by XR1 cells is ineffective in promoting outgrowth. Cell-free substrates were prepared to examine whether outgrowth promoting activity is also associated with the XR1 extracellular matrix (ECM). Substrates derived from XR1 cells grown on collagen are still capable of promoting outgrowth following osmotic shock and chemical extraction. This activity does not appear to be associated with laminin or fibronectin. Scanning electron microscopy was used to examine growth cones of retinal axons on XR1 cells and other substrates that supported neurite outgrowth. Growth cones and neurites growing on a monolayer of XR1 cells, or on collagen conditioned by XR1 cells, closely resemble the growth cones of retinal ganglion cells in vivo. A polyclonal antiserum (NOB1) generated against XR1 cells effectively and specifically inhibits neurite outgrowth on XR1-conditioned collagen. We therefore propose that neurite outgrowth promoting factors produced by these cells are associated with the extracellular matrix and may be glial specific.  相似文献   

9.
Chick embryo retinal ganglion cell (RGC) axons grow to the optic tectum along a stereotyped route, as if responding to cues distributed along the pathway. We showed previously that, in culture, RGCs from embryonic Day 6 retina are responsive to the neurite-promoting effects of the extracellular matrix glycoprotein laminin and that this response is lost by RGCs at a later stage of development. Here we report that, before axon outgrowth is initiated in vivo, laminin, is expressed along the optic pathway at nonbasal lamina sites that are accessible to the growth cones of RGC axons. The distribution of laminin within the pathway is consistent with its localization at the end-feet of neuroepithelial cells that line the route, and it continues to be expressed at these marginal sites during the first week of embryonic development. At later stages, concomitant with the loss of response by RGCs in culture, laminin becomes restricted to basal laminae at the retinal inner limiting membrane and pial surface of the optic pathway. Neurofilament-positive RGC axons bind a monoclonal antibody, JG22, which recognizes the laminin/fibronectin receptor complex, and continue to do so throughout embryonic development. We show that, in vitro, the JG22 antigen expressed by RGCs appears to function as a laminin receptor, by demonstrating that JG22 antibody blocks neurite outgrowth on a substrate of laminin. These findings are consistent with the possibility that laminin defines a transient performed pathway specifically recognized by early RGC growth cones as they navigate toward their central target.  相似文献   

10.
Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.  相似文献   

11.
Quantitative effects of laminin concentration on neurite outgrowth in vitro   总被引:4,自引:0,他引:4  
Recent studies indicate that mediation of neurite outgrowth by the glycoprotein laminin may be a significant factor in the outgrowth of neurites to their targets during embryogenesis. To further characterize the possible role of this extracellular matrix molecule during development, we have systematically measured several features of outgrowth by neonatal rat sympathetic neurons on different concentrations of laminin. Individual neurons, obtained by mechanical dissociation of superior cervical ganglia (SCG), were cultured at low density on laminin substrates ranging from 0.01 to 1.0 microgram/cm2. Outgrowth characteristics were subsequently analyzed for noninteracting cells in both fixed and live cultures. Data obtained from neurons fixed after 11 hr of culture showed approximately twofold increases in neurite initiation and outgrowth, and a twofold decrease in branching for a corresponding 100-fold increase in adsorbed laminin concentration. In time-lapse videomicroscopy observations, the root-mean square speed of growth cone movement increased from 60 to 90 microns/hr over the same range in concentration, while the persistence time remained constant at 0.10 hr. In general, neurite outgrowth parameters were relatively insensitive to changes in laminin concentration, supporting the idea that laminin is a permissive rather than an "instructive" substrate during development. Data obtained from fixed cultures were examined in terms of probability models to suggest possible mechanisms contributing to the dose-dependent effects observed.  相似文献   

12.
Cell surface carbohydrates play an important role in the regulation of neurite outgrowth during neuronal development. We have investigated the actions of the plant lectin concanavalin A (Con A), a carbohydrate-binding protein, on neurite outgrowth from hippocampal pyramidal neurons in primary cell culture. Neurons plated in culture medium containing nanomolar concentrations of Con A have a larger number of primary neurites arising directly from the cell soma than do neurons plated in culture medium alone. Furthermore, Con A causes counterclockwise turning of neurites in over 70% of the cultured neurons. Both of these effects of Con A are blocked by the hapten sugar alpha-methyl-D-mannopyranoside, suggesting that they result from the interaction of Con A with a cell surface carbohydrate. Another lectin with a different sugar specificity, wheat germ agglutinin, does not modulate neurite outgrowth. Analysis of neurite outgrowth using video-enhanced microscopy reveals that the counterclockwise turning is accompanied by directionally biased extension of filopodia from the growth cones of growing neurites. Treatment of the neurons with cytochalasin, which disrupts actin polymerization, eliminates the neurite turning induced by Con A, suggesting that actin microfilaments are involved in directional control of neurite outgrowth.  相似文献   

13.
14.
A biological role of the carbohydrate moieties of laminin   总被引:8,自引:0,他引:8  
The ways in which the carbohydrate moieties of laminin affect its cellular interactions have been examined by two different experimental approaches. In one approach, we used lectins in order to block specific carbohydrates on laminin which previously had been dried onto a plastic surface. We found that wheat germ agglutinin and Griffonia simplicifolia agglutinin I blocked the binding of the neuron-like rat pheochromocytoma cell line PC12. However, when concanavalin A was used cell binding was unaffected but neurite outgrowth was prevented, compared to controls, over a 24-h period. In the second approach we used unglycosylated laminin as a substratum on the plastic surface. We have developed a method for the purification of unglycosylated laminin from tunicamycin treated cultures of a mouse embryonal carcinoma derived cell line, M1536 B3, and have partially characterized the purified material. A mixture of unglycosylated and glycosylated laminin was selectively purified from the M1536 B3 cell lysate by an anti-EHS laminin monoclonal antibody immunoaffinity column. The unglycosylated laminin was separated from glycosylated laminin using G. simplicifolia lectin affinity chromatography. The lectins, wheat germ agglutinin, G. simplicifolia agglutinin I, and concanavalin A, did not bind to any of the subunits of unglycosylated laminin in Western blots. The unglycosylated laminin migrated as a single band in agarose-gel electrophoresis under nonreducing conditions indicating that it is a fully assembled and disulfide bonded molecule. Circular dichroism studies showed no differences between glycosylated and unglycosylated laminin, indicating similar molecular conformations. Western blots using antibodies specific for the A, B1, and B2 chains of laminin showed that unglycosylated laminin contained each of these subunits. We then performed cell binding and spreading or neurite outgrowth assays using unglycosylated laminin. A mouse melanoma cell line, B16 F1, bound to this laminin in the same numbers as to the control glycosylated laminin, but cell spreading was minimal. When this unglycosylated laminin was used as a substrate for PC12 cells neurite outgrowth was impaired; no effect was noted on the number of cells bound, compared to glycosylated laminin. We conclude from these results that once cells become bound to laminin the carbohydrate residues of that glycoprotein must be available to enable the cells to spread or to extend neurite processes.  相似文献   

15.
Cell surface carbohydrates play an important role in the regulation of neurite outgrowth during neuronal development. We have investigated the actions of the plant lectin concanavalin A (Con A), a carbohydrate-binding protein, on neurite outgrowth from hippocampal pyramidal neurons in primary cell culture. Neurons plated in culture medium containing nanomolar concentrations of Con A have a larger number of primary neurites arising directly from the cell soma than do neurons plated in culture medium alone. Furthermore, Con A causes counterclock-wise turning of neurites in over 70% of the cultured neurons. Both of these effects of Con A are blocked by the hapten sugar α-methyl-d-mannopyranoside, suggesting that they result from the interaction of Con A with a cell surface carbohydrate. Another lectin with a different sugar specificity, wheat germ agglutinin, does not modulate neurite outgrowth. Analysis of neurite outgrowth using video-enhanced microscopy reveals that the counter-clockwise turning is accompanied by directionally biased extension of filopodia from the growth cones of growing neurites. Treatment of the neurons with cytochalasin, which disrupts actin polymerization, eliminates the neurite turning induced by Con A, suggesting that actin microfilaments are involved in directional control of neurite outgrowth. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
We have developed an in vitro assay which measures the ability of growth cones to extend on an axonal substrate. Neurite lengths were compared in the presence or absence of monovalent antibodies against specific neural cell surface glycoproteins. Fab fragments of antibodies against the neural cell adhesion molecule, NCAM, have an insignificant effect on the lengths of neurites elongating on either an axonal substrate or a laminin substrate. Fab fragments of polyclonal antibodies against two new neural cell surface antigens, defined by mAb G4 and mAb F11, decrease the lengths of neurites elongating on an axonal substrate, but have no effect on the lengths of neurites elongating on a laminin substrate. G4 antigen is related to mouse L1, while F11 antigen appears to be distinct from all known neural cell surface glycoproteins. Our results suggest that the G4 and F11 antigens help to promote the extension of growth cones on axons.  相似文献   

17.
To determine whether Xenopus retinal neurons undergo intrinsic developmental changes in growth properties, retinal explants from embryos and tadpoles of different stages were grown on laminin, fibronectin, and collagen I in serum-free media. Growth was assayed in terms of a neurite growth index (NGI) and the appearance of clockwise bundles, or a clockwise growth index (CGI). The first neurites from stage 25 optic vesicles are pioneers and display a unique growth phenotype; they emerge rapidly, survive for a short time, show little substrate preferences for growth (they grow almost as well on BSA as they do on laminin and fibronectin), and form no clockwise bundles under any conditions. Neurites from progressively older retinas (stages 32-37) share with stage 25 neurites the rapid outgrowth pattern, but begin to show substrate preferences and clockwise growth. From stage 40 to 50, the mature growth pattern is expressed; a lag in initial outgrowth, long-term survival, distinct substrate preferences (they grow 10 times better on laminin and fibronectin than on BSA) and display robust clockwise growth patterns on laminin and fibronectin. The acquisition of clockwise growth is independent of optic fiber contact with the tectum or exposure to diffusible factors from mature brain tissues. The results suggest that retinal neurons undergo developmental modulation of surface adhesive properties and/or cytoskeletal organization.  相似文献   

18.
The development of connections between thalamic afferents and their cortical target cells occurs in a highly precise manner. Thalamic axons enter the cortex through deep cortical layers, then stop their growth in layer 4 and elaborate terminal arbors specifically within this layer. The mechanisms that underlie target layer recognition for thalamocortical projections are not known. We compared the growth pattern of thalamic explants cultured on membrane substrates purified from cortical layer 4, the main recipient layer for thalamic axons, and cortical layer 5, a non-target layer. Thalamic axons exhibited a reduced growth rate and an increased branching density on their appropriate target membranes compared with non-target substrate. When confronted with alternating stripes of both membrane substrates, thalamic axons grew preferentially on their target membrane stripes. Enzymatic treatment of cortical membranes revealed that growth, branching and guidance of thalamic axons are independently regulated by attractive and repulsive cues differentially expressed in distinct cortical layers. These results indicate that multiple membrane-associated molecules collectively contribute to the laminar targeting of thalamic afferents. Furthermore, we found that interfering with the function of Eph tyrosine kinase receptors and their ligands, ephrins, abolished the preferential branching of thalamic axons on their target membranes, and that recombinant ephrin-A5 ligand elicited a branch-promoting activity on thalamic axons. We conclude that interactions between Eph receptors and ephrins mediate branch formation of thalamic axons and thereby may play a role in the establishment of layer-specific thalamocortical connections.  相似文献   

19.
Growth and guidance behavior of Xenopus embryonic (ER) (optic vesicle stage 25/26) and regenerating retinal fibers (stage 47/50 newly regenerating NR, and actively regenerating RR, respectively) have been studied in vitro on a variety of substrates in serum-free media. RR retinas receive a prior conditioning lesion 12-14 days before explantation while NR retinas are explanted immediately after axotomy. The substrates include plastic (UN), polylysine (PL), polyornithine (PO), laminin (LM), fibronectin (FN), and collagen type I (CO). Two kinds of experimental situations were tested, one in which substrates were derivatized to plastic as a planar surface, while the second involved the addition of a substrate as a soluble supplement to dishes derivatized with PL. A neurite growth index (NGI), based on density of neurite outgrowth and axon lengths, is determined for each fiber type on all substrates. Embryonic and regenerating fibers are phenotypically different fiber types; each displays a specific "substrate preference profile" (SPP), reflecting differential growth on each substrate. ER neurites grow equally well on all planar substrates, including plastic, but do not grow on CO (SPP, LM = FN = PL = PO = UN greater than CO). Both NR and RR neurites show distinct substrate preferences, but RR neurites grow more vigorously (SPP, LM greater than CO greater than PL = PO greater than FN). In media supplemented with LM, FN or CO, the SPPs showed little change but the neurite bundle patterns were qualitatively different. Only regenerating neurites display clockwise growth in laminin (LM) and fibronectin (FN)-supplemented media. Under no conditions do embryonic fibers exhibit this pattern which suggests that embryonic and regenerating retinal fibers also differ in cytoskeletal organization. Evidence of intrinsic growth differences in vitro suggest that embryonic and regenerating retinal fibers may not respond to identical guidance cues during in vivo development and regeneration of retinotectal connections.  相似文献   

20.
Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号