首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humans and animals time intervals from seconds to minutes with high accuracy but limited precision. Consequently, time-based decisions are inevitably subjected to our endogenous timing uncertainty, and thus require temporal risk assessment. In this study, we tested temporal risk assessment ability of humans when participants had to withhold each subsequent response for a minimum duration to earn reward and each response reset the trial time. Premature responses were not penalized in Experiment 1 but were penalized in Experiment 2. Participants tried to maximize reward within a fixed session time (over eight sessions) by pressing a key. No instructions were provided regarding the task rules/parameters. We evaluated empirical performance within the framework of optimality that was based on the level of endogenous timing uncertainty and the payoff structure. Participants nearly tracked the optimal target inter-response times (IRTs) that changed as a function of the level of timing uncertainty and maximized the reward rate in both experiments. Acquisition of optimal target IRT was rapid and abrupt without any further improvement or worsening. These results constitute an example of optimal temporal risk assessment performance in a task that required finding the optimal trade-off between the ‘speed’ (timing) and ‘accuracy’ (reward probability) of timed responses for reward maximization.  相似文献   

2.
In several species of short-lived Australian agamid lizards, an individual’s sex is determined by the nest temperatures encountered during incubation. The adaptive significance of such systems remains unclear. Here, we explore the hypothesis that (1) the optimal timing of hatching differs between the sexes, and thus (2) temperature-dependent sex determination (TSD) enhances maternal and offspring fitness by generating seasonal shifts in offspring sex ratios. Our model predicts that TSD can indeed enhance maternal fitness returns in short-lived lizards if (1) male–male competition is intense, thus reducing mating success of newly-matured males (but not females), and (2) the nesting season is prolonged, such that seasonal effects become significant. Available data on the distribution of TSD in Australian agamid lizards broadly support these predictions. Because both the level of male–male competition and the length of nesting season can vary at small spatial and temporal scales, selective forces on sex-determining mechanisms also should vary. Hence, our model predicts extensive small-scale (intraspecific) variation in sex-determining systems within agamid lizards, as well as among species.  相似文献   

3.

Objective

This administrative data-linkage cohort study examines the association between prison crowding and the rate of post-release parole violations in a random sample of prisoners released with parole conditions in California, for an observation period of two years (January 2003 through December 2004).

Background

Crowding overextends prison resources needed to adequately protect inmates and provide drug rehabilitation services. Violence and lack of access to treatment are known risk factors for drug use and substance use disorders. These and other psychosocial effects of crowding may lead to higher rates of recidivism in California parolees.

Methods

Rates of parole violation for parolees exposed to high and medium levels of prison crowding were compared to parolees with low prison crowding exposure. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated using a Cox model for recurrent events. Our dataset included 13070 parolees in California, combining individual level parolee data with aggregate level crowding data for multilevel analysis.

Results

Comparing parolees exposed to high crowding with those exposed to low crowding, the effect sizes from greatest to least were absconding violations (HR 3.56 95% CI: 3.05–4.17), drug violations (HR 2.44 95% CI: 2.00–2.98), non-violent violations (HR 2.14 95% CI: 1.73–2.64), violent and serious violations (HR 1.88 95% CI: 1.45–2.43), and technical violations (HR 1.86 95% CI: 1.37–2.53).

Conclusions

Prison crowding predicted higher rates of parole violations after release from prison. The effect was magnitude-dependent and particularly strong for drug charges. Further research into whether adverse prison experiences, such as crowding, are associated with recidivism and drug use in particular may be warranted.  相似文献   

4.
Climatic changes are disrupting otherwise tight trophic interactions between predator and prey. Most of the earlier studies have primarily focused on the temporal dimension of the relationship in the framework of the match–mismatch hypothesis. This hypothesis predicts that predator's recruitment will be high if the peak of the prey availability temporally matches the most energy‐demanding period of the predators breeding phenology. However, the match–mismatch hypothesis ignores the level of food abundance while this can compensate small mismatches. Using a novel time‐series model explicitly quantifying both the timing and the abundance component for trophic relationships, we here show that timing and abundance of food affect recruitment differently in a marine (cod/zooplankton), a marine–terrestrial (puffin/herring) and a terrestrial (sheep/vegetation) ecosystem. The quantification of the combined effect of abundance and timing of prey on predator dynamics enables us to come closer to the mechanisms by which environment variability may affect ecological systems.  相似文献   

5.
Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network''s interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.  相似文献   

6.
Birdsong is a unique model to address learning mechanisms of the timing control of sequential behaviors, with characteristic temporal structures consisting of serial sequences of brief vocal elements (syllables) and silent intervals (gaps). Understanding the neural mechanisms for plasticity of such sequential behavior should be aided by characterization of its developmental changes. Here, we assessed the level of acute vocal plasticity between young and adult Bengalese finches, and also quantified developmental change in variability of temporal structure. Acute plasticity was tested by delivering aversive noise bursts contingent on duration of a target gap, such that birds could avoid the noise by modifying their song. We found that temporal variability of song features decreased with birds' maturation. Noise‐avoidance experiments demonstrated that maximal changes of gap durations were larger in young that in adult birds. After these young birds matured, the maximal change decreased to a similar level as adults. The variability of these target gaps also decreased as the birds matured. Such parallel changes suggest that the level of acute temporal plasticity could be predicted from ongoing temporal variability. Further, we found that young birds gradually began to stop their song at the target gap and restart from the introductory part of song, whereas adults did not. According to a synaptic chain model for timing sequence generation in premotor nuclei, adult learning would be interpreted as adaptive changes in conduction delays between chain‐to‐chain connections, whereas the learning of young birds could mainly depend on changes of the connections. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 995–1006, 2017  相似文献   

7.
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)–monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single‐year decline in the western monarch population. Our results show early‐ and late‐season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early‐season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early‐spring migrant female monarchs select earlier‐emerging plants to balance a seasonal trade‐off between increasing host plant quantity and decreasing host plant quality. Late‐season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late‐season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom‐up, top‐down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed–monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.  相似文献   

8.
The ontogeny of an organism is a complex process that strongly depends on the timing of developmental processes. In this article, I discuss ontogeny of fish (and other organisms) in temporal terms, based on the hypothesis that organisms as self-organized entities may create their own times for their development, and that this development consists of a sequence of longer stabilized states (steps) with shorter, intermittent less-stable intervals (thresholds). If viewed within the context of structure-to-structure, organ-to-organ and/or organism-to-environment relationships, then the saltatory pattern of ontogeny emerges at each transition from one stabilized state to another. I consider two timing mechanisms essential to ontogeny - synchrony (coordinating) and heterochrony (implementing); their possible roles are discussed. Besides this, a new context and understanding for the term heterochrony is proposed. At least three levels of heterochrony should be distinguished: interspecific, intraspecific and intraindividual. However, the difference among these three types of heterochrony is not in the phenomenon itself but in the way we perceive and classify it.  相似文献   

9.
The transfer of relative temporal representations was assessed in a series of three experiments. In each experiment, rats (Rattus norvegicus) received one set of conditioned stimulus (CS) and intertrial interval (ITI) durations in Phase 1 and another set in Phase 2. The ratio between the CS and ITI intervals was either changed or maintained across phases. On the hypothesis that relative temporal representations are learned, groups receiving maintained temporal ratios across phases were expected to display greater change in responding upon encountering the new intervals. When the CS duration decreased across phases, maintaining the temporal ratio did lead to greater change in Day 1 of Phase 2 towards the final pattern of responding. However, when the CS increased across phases, maintaining the temporal ratio across phases did not facilitate adjustment to the new intervals, suggesting that extinction of previously reinforced times induced new learning. These results provide evidence that under some conditions, relative relationships in temporal maps may survive transformation-of-scale, like relative relationships in spatial maps.  相似文献   

10.

Background and Objective

Conflicting data have been reported on the association between tumor necrosis factor (TNF) –308G>A and nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine. We performed a meta-analysis of case-control studies to evaluate whether the TNF –308G>A and NOS3 +894G>T polymorphisms confer genetic susceptibility to migraine.

Method

We performed an updated meta-analysis for TNF –308G>A and a meta-analysis for NOS3 +894G>T based on studies published up to July 2014. We calculated study specific odds ratios (OR) and 95% confidence intervals (95% CI) assuming allele contrast, dominant model, recessive model, and co-dominant model as pooled effect estimates.

Results

Eleven studies in 6682 migraineurs and 22591 controls for TNF –308G>A and six studies in 1055 migraineurs and 877 controls for NOS3 +894G>T were included in the analysis. Neither indicated overall associations between gene polymorphisms and migraine risk. Subgroup analyses suggested that the “A” allele of the TNF –308G>A variant increases the risk of migraine among non-Caucasians (dominant model: pooled OR = 1.82; 95% CI 1.15 – 2.87). The risk of migraine with aura (MA) was increased among both Caucasians and non-Caucasians. Subgroup analyses suggested that the “T” allele of the NOS3 +894G>T variant increases the risk of migraine among non-Caucasians (co-dominant model: pooled OR = 2.10; 95% CI 1.14 – 3.88).

Conclusions

Our findings appear to support the hypothesis that the TNF –308G>A polymorphism may act as a genetic susceptibility factor for migraine among non-Caucasians and that the NOS3 +894G>T polymorphism may modulate the risk of migraine among non-Caucasians.  相似文献   

11.
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.  相似文献   

12.

Background

Perceived spatial intervals between successive flashes can be distorted by varying the temporal intervals between them (the “tau effect”). A previous study showed that a tau effect for visual flashes could be induced when they were accompanied by auditory beeps with varied temporal intervals (an audiovisual tau effect).

Methodology/Principal Findings

We conducted two experiments to investigate whether the audiovisual tau effect occurs in infancy. Forty-eight infants aged 5–8 months took part in this study. In Experiment 1, infants were familiarized with audiovisual stimuli consisting of three pairs of two flashes and three beeps. The onsets of the first and third pairs of flashes were respectively matched to those of the first and third beeps. The onset of the second pair of flashes was separated from that of the second beep by 150 ms. Following the familiarization phase, infants were exposed to a test stimulus composed of two vertical arrays of three static flashes with different spatial intervals. We hypothesized that if the audiovisual tau effect occurred in infancy then infants would preferentially look at the flash array with spatial intervals that would be expected to be different from the perceived spatial intervals between flashes they were exposed to in the familiarization phase. The results of Experiment 1 supported this hypothesis. In Experiment 2, the first and third beeps were removed from the familiarization stimuli, resulting in the disappearance of the audiovisual tau effect. This indicates that the modulation of temporal intervals among flashes by beeps was essential for the audiovisual tau effect to occur (Experiment 2).

Conclusions/Significance

These results suggest that the cross-modal processing that underlies the audiovisual tau effect occurs even in early infancy. In particular, the results indicate that audiovisual modulation of temporal intervals emerges by 5–8 months of age.  相似文献   

13.
Predominance of right‐handedness has historically been considered as a hallmark of human evolution. Whether nonhuman primates exhibit population‐level manual bias remains a controversial topic. Here, we investigated the hypothesis that bimanual coordinated activities may be a key‐behavior in our ancestors for the emergence and evolution of human population‐level right‐handedness. To this end, we collected data on hand preferences in 35 captive gorillas (Gorilla gorilla) during simple unimanual reaching and for bimanual coordinated feeding. Unimanual reaching consisted of grasping food on the ground, while bimanual feeding consisted of using one hand for holding a food and processing the food item by the opposite hand. No population‐level manual bias was found for unimanual actions but, in contrast, gorillas exhibited a significant population‐level right‐handedness for the bimanual actions. Moreover, the degree of right‐handedness for bimanual feeding exceeds any other known reports of hand use in primates, suggesting that lateralization for bimanual feeding is robust in captive gorillas. The collective evidence is discussed in the context of potential continuity of handedness between human and nonhuman primates. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.  相似文献   

15.
J. S. King  R. K. Mortimer 《Genetics》1991,129(2):597-602
In determining genetic map distances it is necessary to infer crossover frequencies from the ratios of recombinant and parental progeny. To do this accurately, in intervals where multiple crossovers may occur, a mathematical model of chiasma interference must be assumed when mapping in organisms displaying such interference. In Saccharomyces cerevisiae the model most frequently used is that of R.W. Barratt. An alternative to this model is presented. This new model is implemented using a microcomputer and standard numerical methods. It is demonstrated to fit ranked tetrad data from Saccharomyces more closely than the Barratt model and thus generates more accurate estimates of map distances when used with two-point data. A computer program implementing the model has been developed for use in calculating map distances from tetrad data in Saccharomyces.  相似文献   

16.
Pigeons were trained in a within-subjects design to discriminate durations of an empty interval and a filled interval. Even when different stimuli were used to mark empty intervals and to signal filled intervals, pigeons judged empty intervals to be longer than equal-length filled intervals. This timing difference was not a result of pigeons timing marker duration on empty interval trials. Increasing marker duration did not produce an overestimation of the empty time intervals. It was suggested that this timing difference could be due to a reduction in attention to temporal processing on filled interval trials when visual stimuli are used. Consistent with this hypothesis, it was found that empty intervals were judged longer than filled intervals when testing occurred in a darkened test room, but not when the test room was illuminated. In addition, no timing difference was observed when different auditory stimuli were used as markers for empty intervals and as signals for filled intervals.  相似文献   

17.
We analyzed birth dates recorded during an 18-year period in a group of Japanese macaques housed in the Rome zoo to assess the influence of environmental, physiological, and social factors on birth seasonality. Birth timing differed significantly among years. Birth timing was affected by reproductive condition of females—ones that had given birth in the previous year delivered significantly later than those that had not—but not by their age or dominance rank. We conducted further analyses separately on females that had or had not given birth in the previous year. In both subgroups of females mean birth date was not influenced either by environmental temperature and rainfall during the previous mating season or by group size. On the contrary, among females that had not given birth in the previous year, socionomic sex ratio—ratio of sexually mature males to sexually mature females—is positively correlated with both mean birth date and date of the first birth, but not with date of the last birth. Contrarily, among females that had given birth in the previous year, there is no significant relationship between these variables. We hypothesize that the effects of socionomic sex ratio on birth timing might depend on competition among males for access to fertile females. When the number of males per female was higher, mutual disruption of consort pairs may have led to a delay in the onset of mating.  相似文献   

18.
Offspring often compete over limited available resources. Such sibling competition may be detrimental to parents both because it entails wasted expenditure and because it allows stronger offspring to obtain a disproportionate share of resources. We studied nestling conflict over food and its resolution in a joint-nesting species of bird, the Taiwan yuhina (Yuhina brunneiceps). We show that adult yuhinas coordinate their feeding visits, and that this coordination limits competition among nestlings, leading to a ‘fairer’ division of resources. Transponder identification and video-recording systems were used to observe adult feeding and nestling begging behaviours. We found that: (i) yuhinas feed nestlings more often in large parties than in small parties; (ii) feeding events occurred non-randomly in bouts of very short intervals; and (iii) food distribution among nestlings was more evenly distributed, and fewer nestlings begged, during large-party feeding bouts compared with small-party feeding bouts. To our knowledge, this is the first study in a cooperative breeding species showing that adults can influence food allocation and competition among nestlings by coordinating their feeding visits. Our results confirm the hypothesis that the monopolizability of food affects the intensity of sibling competition, and highlight the importance of understanding the temporal strategies of food delivery.  相似文献   

19.
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.  相似文献   

20.
M E Zwick  D J Cutler  C H Langley 《Genetics》1999,152(4):1615-1629
A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号