首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the relationship between neutrophil [polymorphonuclear leukocyte (PMN)] influx and lung vascular injury in response to Escherichia coli pneumonia. We assessed lung tissue PMN uptake by measuring myeloperoxidase and transvascular PMN migration by determining PMN counts in lung interstitium and bronchoalveolar lavage fluid (BALF) in mice challenged intratracheally with E. coli. Lung vascular injury was quantified by determining microvessel filtration coefficient (Kf,c), a measure of vascular permeability. We addressed the role of CD18 integrin in the mechanism of PMN migration and lung vascular injury by inducing the expression of neutrophil inhibitory factor, a CD11/CD18 antagonist. In control animals, we observed a time-dependent sixfold increase in PMN uptake, a fivefold increase in airway PMN migration, and a 20-fold increase in interstitial PMN uptake at 6 h after challenge. Interestingly, Kf,c increased minimally during this period of PMN extravasation. CD11/CD18 blockade reduced lung tissue PMN uptake consistent with the role of CD18 in mediating PMN adhesion to the endothelium but failed to alter PMN migration in the tissue. Moreover, CD11/CD18 blockade did not affect Kf,c. Analysis of BALF leukocytes demonstrated diminished oxidative burst compared with leukocytes from bacteremic mice, suggesting a basis for lack of vascular injury. The massive CD11/CD18-independent airway PMN influx occurring in the absence of lung vascular injury is indicative of an efficient host-defense response elicited by E. coli pneumonia.  相似文献   

2.
The effects of Escherichia coli endotoxin and phorbol myristate acetate (PMA), a potential stimulator of polymorphonuclear leukocyte (PMN), on circulating PMN counts, gas exchange, protein concentration of lavage fluid, pulmonary hemodynamics and pathology of the lung were studied in ten anesthetized dogs. Six dogs were infused with 1 microgram/kg endotoxin plus 10 micrograms/kg of PMA; four other dogs were infused with the same amount of endotoxin but 5 micrograms/kg of PMA. After administration of endotoxin plus 10 micrograms/kg PMA, the number of circulating PMN (per mm3) decreased dramatically from 4081 +/- 1041 to 303 +/- 119, arterial oxygen partial pressure (PaO2) dropped to 49.1 +/- 2.4 mmHg and the arterial alveolar oxygen partial pressure difference (A-a DO2) increased significantly above baseline. Lungs from this group appeared to be grossly damaged: edema with distinct petechial hemorrhage and areas of hemorrhagic consolidation; frothy edema fluid often emanated from the tracheas. The group infused with endotoxin plus 5 micrograms/kg PMA showed no significant decrease in the number of PMN; PaO2 and A-a DO2 maintained comparatively stable. Protein concentration of lavage fluid and lung wet/dry weight ratios in dogs of 10 micrograms/kg PMA group were significantly increased (P less than 0.05) as compared to those of 5 micrograms/kg PMA group. Our study showed that the magnitude of leukopenia after endotoxin and PMA was paralleled with the severity of lung vascular injury. These results support the potential role of PMN in the pathogenesis of acute edematous lung injury.  相似文献   

3.
Drugs possessing membrane stabilizing activity might act to diminish the augmented microvascular permeability resulting from acute lung injury. To test this rats were pretreated with quinidine, procainamide, or lidocaine and then given the lung injury-inducing agent thiourea. Vascular permeability, assessed as the extravascular accumulation of radiolabeled protein, was increased more than threefold by thiourea. This increase was diminished by 29, 34, and 43% after pretreatment with procainamide, quinidine, and lidocaine, respectively. Lidocaine also returned the thiourea-induced increase in lung wet weight-to-dry weight ratios to control levels. This protection was not likely due to hemodynamic effects of these agents, since no differences were noted in cardiac output between pretreated rats and those receiving thiourea alone and a small increase in mean pulmonary arterial pressure in the lidocaine-pretreatment group was the only difference noted. O2 metabolites have been implicated in the pathogenesis of thiourea-induced lung injury. None of these agents scavenged O2- or H2O2 directly, but quinidine and procainamide diminished in vitro neutrophil O2- and H2O2 production, and lidocaine inhibited neutrophil H2O2 production. However, neutropenia (PMN less than 100/ml) induced with either vinblastine or cyclophosphamide (Cytoxan) failed to prevent thiourea-induced increases in pulmonary vascular protein leak. In conclusion, procainamide, quinidine, and lidocaine diminished lung injury in rats after thiourea. Although these agents diminish PMN O2 metabolite production in vitro their salutary role in thiourea-induced lung injury appears to be through an unknown mechanism that is independent of their effects on neutrophil O2 metabolite-dependent toxicity.  相似文献   

4.
Injection of phorbol 12-myristate 13-acetate (PMA) into polymorphonuclear leukocyte (PMN)-depleted, PMN cytoplast-repleted New Zealand White rabbits caused the development of acute lung injury in vivo. PMN cytoplasts are nucleus- and granule-free vesicles of cytoplasm capable of releasing toxic O2 radicals but incapable of releasing granule enzymes. PMN cytoplasts when activated by PMA reduced 66 +/- 12.7 nmol of cytochrome c compared with 2.6 +/- 0.7 nmol in their resting state and did not release a significant quantity of granule enzymes (P greater than 0.05). Injection of PMA into New Zealand White rabbits caused a significant decrease (P less than 0.05) in the number of circulating cytoplasts. Increases in lung weight-to-body weight ratios in PMA-treated rabbits (9.8 +/- 0.5 X 10(-3] compared with saline-treated rabbits (5.3 +/- 0.2 X 10(-3] were also noted. Levels of angiotensin-converting enzyme in lung lavage as well as the change in alveolar-arterial O2 ratio correlated with the numbers of cytoplasts in lung lavage (P = 0.001, r = 0.84 and P = 0.0166, r = 0.73, respectively). Albumin in lung lavage increased to 1,700 +/- 186 mg/ml in PMA-treated rabbits from 60 +/- 30 mg/ml in saline-treated rabbits. These changes were attenuated by pretreatment of rabbits with dimethylthiourea (DMTU). In vitro, cytoplasts were able to mediate increases in endothelial monolayer permeability. This was evidenced by increases in fractional transit of albumin across endothelial monolayers when treated with PMA-activated cytoplasts (0.08 +/- 0.01 to 0.28 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ischemia and reperfusion of the ischemic lower torso lead to a neutrophil- (PMN) dependent lung injury characterized by PMN sequestration and permeability edema. This mimics the injury seen after infusion of tumor necrosis factor alpha (TNF), a potent activator of PMN and endothelium. This study tests whether TNF is a mediator of the lung injury after lower torso ischemia. Anesthetized rats underwent 4 h of bilateral hindlimb tourniquet ischemia, followed by reperfusion for 10 min, 30 min, 1, 2, 3, and 4 h (n = 6 for each time point). Quantitative lung histology indicated progressive sequestration of PMN in the lungs, 25 +/- 3 (SE) PMN/10 high-power fields (HPF) 10 min after reperfusion vs. 20 +/- 2 PMN/10 HPF in sham animals (NS), increasing to 53 +/- 5 PMN/10 HPF after 4 h vs. 23 +/- 3 PMN/10 HPF in sham animals (P less than 0.01). There was lung permeability, shown by increasing protein accumulation in bronchoalveolar lavage (BAL) fluid, which 4 h after reperfusion was 599 +/- 91 vs. 214 +/- 35 micrograms/ml in sham animals (P less than 0.01). Similarly, there was edema, shown by the lung wet-to-dry weight ratio, which increased by 4 h to 4.70 +/- 0.12 vs. 4.02 +/- 0.17 in sham animals (P less than 0.01). There was generation of leukotriene B4 in BAL fluid (720 +/- 140 vs. 240 +/- 40 pg/ml, P less than 0.01), and in three of six rats tested at this time TNF was detected in plasma, with a mean value of 167 pg/ml. TNF was not detectable in any sham animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Early life is a dynamic period of growth for the lung and immune system. We hypothesized that ambient ozone exposure during postnatal development can affect the innate immune response to other environmental challenges in a persistent fashion. To test this hypothesis, we exposed infant rhesus macaque monkeys to a regimen of 11 ozone cycles between 30 days and 6 mo of age; each cycle consisted of ozone for 5 days (0.5 parts per million at 8 h/day) followed by 9 days of filtered air. Animals were subsequently housed in filtered air conditions and challenged with a single dose of inhaled LPS at 1 yr of age. After completion of the ozone exposure regimen at 6 mo of age, total peripheral blood leukocyte and polymorphonuclear leukocyte (PMN) numbers were reduced, whereas eosinophil counts increased. In lavage, total cell numbers at 6 mo were not affected by ozone, however, there was a significant reduction in lymphocytes and increased eosinophils. Following an additional 6 mo of filtered air housing, only monocytes were increased in blood and lavage in previously exposed animals. In response to LPS challenge, animals with a prior history of ozone showed an attenuated peripheral blood and lavage PMN response compared with controls. In vitro stimulation of peripheral blood mononuclear cells with LPS resulted in reduced secretion of IL-6 and IL-8 protein in association with prior ozone exposure. Collectively, our findings suggest that ozone exposure during infancy can result in a persistent effect on both pulmonary and systemic innate immune responses later in life.  相似文献   

7.
8.
Bronchoalveolar lavage (BAL) is a well-characterized technique for analysis of cellular constituents of the airways and air spaces, but whole lung lavage requires that the animal be euthanized. We describe a technique of segmental BAL in rats that allows serial measurements of inflammation. A tracheal tube was placed, under direct visualization, in lightly anesthetized animals, and a catheter was passed through the tracheal tube and advanced to a wedge position. Five 0.1-ml volumes of buffer solution were instilled and then withdrawn with gentle suction. In normal rats, the percentages of neutrophils, eosinophils, and mononuclear cells had a high level of agreement in the segmental samples compared with those obtained subsequently by whole lung lavage. In rats with acute pulmonary inflammation, the differential leukocyte counts from segmental samples exhibited patterns of change that differed from those of whole lung lavage; however, most segmental samples were obtained from the left lung base so that regional variability could be minimized in serial studies. Lung mechanics and airway inflammation were not affected by repeated segmental BALs done 2 wk apart.  相似文献   

9.
We have previously shown that lung injury following fluid resuscitation either with hypertonic saline (HS) or lactated Ringer's (LR) plus pentoxifylline (PTX) attenuated acute lung injury when compared with LR resuscitation. The objective of the present study is to determine whether our previous observations are accompanied by changes in polymorphonu-clear leukocyte (PMN) behavior. To study this, PMN-endothelial cell interactions, microcirculatory blood flow, lung histology, lung PMN infiltration (MPO, Myeloperoxidase), and lung intra-cellular adhesion molecule-1 (ICAM-1) expression were assessed in a controlled hemorrhagic shock model followed by LR, HS, and LR+PTX resuscitation in rodents. Rats (240-300 g) were bled to a mean arterial pressure (MAP) of 35 mm Hg for 1 hr and then randomized into three groups: HS (7.5% NaCl, 4 ml/kg); LR (3x shed blood); and LR+PTX (25 mg/kg). Additionally, total shed blood was reinfused. A sham group underwent no shock and no treatment. The internal spermatic fascia was exteriorized and the microcirculation was observed by closed-circuit TV coupled to a microscope, 2 and 6 hrs after treatment. The number of leukocytes sticking to the venular endothelium was determined 2 hrs after fluid resuscitation. Microcirculatory blood flow was measured by an optical Doppler velocimeter. Lung histology and lung MPO immunostaining were assessed at 6 hrs, and lung ICAM-1 expression was determined by immunostaining at 2 hrs following fluid resuscitation. Two hours after treatment, HS (1.4 +/- 0.4), LR+PTX (1.7 +/- 0.3), and sham (0.4 +/- 0.2) groups presented significant reductions in leukocyte adherence (cells/100 microm venule length), compared with the LR group (4.0 +/- 0.9, P < 0.05). No differences were observed 6 hrs after treatment on leukocyte adherence and microcirculatory blood flow. ICAM-1 expression was significantly higher in LR-treated animals compared with the HS, LR+PTX, and sham groups (P < 0.01). PMN infiltration and overall lung injury were significantly attenuated by HS and LR+PTX. These results support earlier studies that indicated the potential application of HS and PTX in shock therapy and the increase in PMN-endothelial cell interaction and lung injury after LR resuscitation.  相似文献   

10.
The fungus Stachybotrys chartarum has been implicated in cases of nonspecific indoor air quality complaints in adults and in cases of pulmonary hemorrhaging in infants. The effects that have been described have been attributed to mycotoxins. Previous dose-effect studies focused on exposure to a single mycotoxin in a solvent, a strategy which is unlikely to accurately characterize the effects of inhaled spores. In this study we examined the role of mycotoxins in the pulmonary effects caused by S. chartarum spores and the dose dependency of these effects. S. chartarum spores were extracted in methanol to reduce the mycotoxin content of the spores. Then either untreated (toxin-containing) or methanol-extracted S. chartarum spores were intratracheally instilled into male 10-week-old Charles River-Dawley rats. After 24 h, the lungs were lavaged, and the bronchoalveolar lavage fluid was analyzed to determine differences in lactic dehydrogenase, albumin, hemoglobin, myeloperoxidase, and leukocyte differential counts. Weight change was also monitored. Our data show that methanol extraction dramatically reduced the toxicity of S. chartarum spores. No statistically significant effects were observed in the bronchoalveolar lavage fluids of the animals that were treated with methanol-extracted spores at any dose. Conversely, dose-dependent effects of the toxin-containing spores were observed when we examined the lactic dehydrogenase, albumin, and hemoglobin concentrations, the polymorphonuclear leukocyte counts, and weight loss. Our findings show that a single, intense exposure to toxin-containing S. chartarum spores results in pulmonary inflammation and injury in a dose-dependent manner. Importantly, the effects are related to methanol-soluble toxins in the spores.  相似文献   

11.
Polymorphonuclear leukocytes (PMN) play an important role in ventilator-induced lung injury (VILI), but the mechanisms of pulmonary PMN recruitment, particularly early intravascular PMN sequestration during VILI, have not been elucidated. We investigated the physiological and molecular mechanisms of pulmonary PMN sequestration in an in vivo mouse model of VILI. Anesthetized C57/BL6 mice were ventilated for 1 h with high tidal volume (injurious ventilation), low tidal volume and high positive end-expiratory pressure (protective ventilation), or normal tidal volume (control ventilation). Pulmonary PMN sequestration analyzed by flow cytometry of lung cell suspensions was substantially enhanced in injurious ventilation compared with protective and control ventilation, preceding development of physiological signs of lung injury. Anesthetized, spontaneously breathing mice with continuous positive airway pressure demonstrated that raised alveolar pressure alone does not induce PMN entrapment. In vitro leukocyte deformability assay indicated stiffening of circulating leukocytes in injurious ventilation compared with control ventilation. PMN sequestration in injurious ventilation was markedly inhibited by administration of anti-L-selectin antibody, but not by anti-CD18 antibody. These results suggest that mechanical ventilatory stress initiates pulmonary PMN sequestration early in the course of VILI, and this phenomenon is associated with stretch-induced inflammatory events leading to PMN stiffening and mediated by L-selectin-dependent but CD18-independent mechanisms.  相似文献   

12.
Infiltration of activated neutrophils [polymorphonuclear leukocytes (PMN)] into the lung is an important component of the inflammatory response in acute lung injury. The signals required to direct PMN into the different compartments of the lung have not been fully elucidated. In a murine model of LPS-induced lung injury, we investigated the sequential recruitment of PMN into the pulmonary vasculature, lung interstitium, and alveolar space. Mice were exposed to aerosolized LPS and bronchoalveolar lavage fluid (BAL), and lungs were harvested at different time points. We developed a flow cytometry-based technique to assess in vivo trafficking of PMN in the intravascular and extravascular lung compartments. Aerosolized LPS induced consistent PMN migration into all lung compartments. We found that sequestration in the pulmonary vasculature occurred within the first hour. Transendothelial migration into the interstitial space started 1 h after LPS exposure and increased continuously until a plateau was reached between 12 and 24 h. Transepithelial migration into the alveolar air space was delayed, as the first PMN did not appear until 2 h after LPS, reaching a peak at 24 h. Transendothelial migration and transepithelial migration were inhibited by pertussis toxin, indicating involvement of Galphai-coupled receptors. These findings confirm LPS-induced migration of PMN into the lung. For the first time, distinct transmigration steps into the different lung compartments are characterized in vivo.  相似文献   

13.
Pulmonary air embolism causes physical obstruction of microvasculature and leads to permeability changes, release of mediators, and injury to lung tissue. In this study we employed an isolated perfused rat lung model to investigate the primary and secondary effects produced by infusion of air into the pulmonary artery. Infusion of various doses of air (0.10-0.25 ml) over a 1-min period produced a dose-dependent increase in pulmonary arterial pressure and lung weight gain. In contrast, when a constant air dose was administered over various periods of time (0.25 ml over 0.5-8.0 min), the pulmonary arterial pressure rose to the same extent regardless of the infusion rate, whereas the lung weight gain increased proportionately with the rate of infusion. Total vascular resistance rose from 1.41 +/- 0.04 to 5.04 +/- 0.09 mmHg.ml-1.min in rats given 0.25 ml air over 1 min (n = 14, P less than 0.001), with greater than or equal to 90% of this increase occurring in the arterial segments. Both thromboxane B2 and endothelin concentrations also increased in the perfusate, suggesting their involvement in this increased resistance. Furthermore the pulmonary filtration coefficient increased from 0.21 +/- 0.05 to 1.28 +/- 0.26 g.min-1.cmH2O-1.100 g (n = 8, P less than 0.001), and the protein concentration in lung lavage fluid also rose, indicating lung injury. Leukocyte counts in the perfusate were unaffected by embolization, but chemiluminescent activity was increased, indicating a possible role for activated leukocytes in lung injury induced by air emboli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Although bacterial endotoxins have potent effects on blood monocytes and tissue macrophages, the role of alveolar macrophages in regulating intrapulmonary neutrophil traffic following endotoxemia has not been studied previously. We have previously reported that a single intraperitoneal injection of endotoxin from Escherichia coli serotype 055B5 causes acute lung inflammation by neutrophils (PMN) in rats. The factors which influence the migration of PMN in the lung in this model are unknown. To determine whether macrophage-derived products could play a role in directing migration, we enumerated neutrophils in histologic sections and employed electron microscopy to document the location of neutrophils in the lung in vivo following endotoxin. We also cultured the alveolar macrophages recovered by lung lavage to measure the effect of their culture supernatants on neutrophil migration in vitro. In the first 6 hr following endotoxin, and also 24 hr later, there was an increase in the number of PMN enumerated in the lung parenchyma by light microscopy. Electron microscopy showed the location of the neutrophils to be exclusively intravascular at 6 hr. By contrast, neutrophils were observed in both interstitial and bronchoalveolar spaces at 24 hr, confirming that transvascular migration was active at that time. The pulmonary macrophages which were recovered by lung lavage from groups of rats sacrificed at 4 and at 15 hr following the administration of endotoxin were assayed for the release into culture media of migration-stimulatory activity for neutrophils. Macrophages from animals sacrificed 4 hr following endotoxin released less migration-stimulating activity into media than macrophages from controls. These macrophages could be stimulated to release migration-stimulating activity into culture media at levels comparable to macrophages from controls by the addition of opsonized Zymosan to the culture media. By contrast, macrophages from animals sacrificed 15 hr after endotoxin spontaneously released more migration-stimulating activity for neutrophils than did macrophages from controls. Thus, in this model, a specific increase in the synthesis or release by alveolar macrophages of factors which stimulate the migration of neutrophils in vitro coincided with a transition from intravascular to extravascular alveolar inflammation by neutrophils in vivo. These observations are consistent with the hypothesis that pulmonary alveolar macrophages may contribute to the regulation of alveolar inflammation following endotoxemia by releasing factors which influence the migration of neutrophils.  相似文献   

15.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

16.
Gemcitabine, a nucleoside analogue for treating lung cancer, is clinically administered as an intravenous infusion. To achieve better patient compliance and more direct effect on the lung, we explored a new gemcitabine pulmonary delivery route and evaluated the pharmacokinetics and acute lung injury aspects in animals. Pharmacokinetics of gemcitabine were measured in Sprague-Dawley rats after intravenous (i.v.), intratracheal instillation by tracheotomy (i.t.t.), intratracheal instillation via orotrachea (i.t.o.), and intragastric (i.g.) administration of gemcitabine. Acute lung injury effects of the pulmonary delivery of gemcitabine were performed in Sprague-Dawley rats after i.t.o. and i.v. administration of gemcitabine and i.t.o. administration of lipopolysaccharide (LPS) as a positive control and physiological saline as a blank control. Indicators for acute lung injury that were evaluated included lung morphology, lung histopathology, lung coefficient, lung wet/dry weight ratio, total cell and classification counts in bronchoalveolar lavage cells (BALC), and total protein and TNF-alpha levels in bronchoalveolar lavage fluids (BALF). After i.t.t. or i.t.o. administration, gemcitabine was quickly absorbed, but i.g. administration led to an undetectable plasma gemcitabine concentration. Absolute bioavailability of gemcitabine after i.t.t. and i.t.o. administration was 91% and 65%, respectively. Gemcitabine given as i.t.o. administration did not cause any overt acute lung injury. All indicators for acute lung injury in the i.t.o. group were similar to those in the i.v. group or in the blank control, but significantly different from those in the positive control. In conclusion, the pharmacokinetics and acute lung injury studies suggest that pulmonary gemcitabine delivery would be a new and promising administration route.  相似文献   

17.
The fungus Stachybotrys chartarum has been implicated in cases of nonspecific indoor air quality complaints in adults and in cases of pulmonary hemorrhaging in infants. The effects that have been described have been attributed to mycotoxins. Previous dose-effect studies focused on exposure to a single mycotoxin in a solvent, a strategy which is unlikely to accurately characterize the effects of inhaled spores. In this study we examined the role of mycotoxins in the pulmonary effects caused by S. chartarum spores and the dose dependency of these effects. S. chartarum spores were extracted in methanol to reduce the mycotoxin content of the spores. Then either untreated (toxin-containing) or methanol-extracted S. chartarum spores were intratracheally instilled into male 10-week-old Charles River-Dawley rats. After 24 h, the lungs were lavaged, and the bronchoalveolar lavage fluid was analyzed to determine differences in lactic dehydrogenase, albumin, hemoglobin, myeloperoxidase, and leukocyte differential counts. Weight change was also monitored. Our data show that methanol extraction dramatically reduced the toxicity of S. chartarum spores. No statistically significant effects were observed in the bronchoalveolar lavage fluids of the animals that were treated with methanol-extracted spores at any dose. Conversely, dose-dependent effects of the toxin-containing spores were observed when we examined the lactic dehydrogenase, albumin, and hemoglobin concentrations, the polymorphonuclear leukocyte counts, and weight loss. Our findings show that a single, intense exposure to toxin-containing S. chartarum spores results in pulmonary inflammation and injury in a dose-dependent manner. Importantly, the effects are related to methanol-soluble toxins in the spores.  相似文献   

18.
Perfusion of isolated sheep lungs with homologous blood caused pulmonary hypertension and edema that was not altered by depletion of perfusate polymorphonuclear (PMN) leukocytes (D. B. Pearse et al., J. Appl. Physiol. 66: 1287-1296, 1989). The purpose of this study was to evaluate the role of resident PMN leukocytes in this injury. First, we quantified the content and activation of lung PMN leukocytes before and during perfusion of eight isolated sheep lungs with a constant flow (100 ml.kg-1.min-1) of homologous blood. From measurements of myeloperoxidase (MPO) activity, we estimated that the lungs contained 1.2 x 10(10) PMN leukocytes, which explained why the lung PMN leukocyte content, measured by MPO activity and histological techniques, did not increase significantly with perfusion, despite complete sequestration of 2.0 x 10(9) PMN leukocytes from the perfusate. MPO activities in perfusate and lymph supernatants did not increase during perfusion, suggesting that lung PMN leukocytes were not activated. Second, we perfused lungs from 6 mechlorethamine-treated and 6 hydroxyurea-treated sheep with homologous leukopenic blood and compared them with 11 normal lungs perfused similarly. Despite marked reductions in lung PMN leukocyte concentration, there were no differences in pulmonary arterial pressure, lymph flow, or reservoir weight between groups. Extravascular lung water was greater in both groups of leukopenic lungs. These results suggest that resident PMN leukocytes did not contribute to lung injury in this model.  相似文献   

19.
Glutathione is a tripeptide important in a number of diverse cellular functions including enzymatic reactions involved in prostaglandin endoperoxide metabolism. We have previously reported that cyclophosphamide administration to rats results in acute lung injury manifested by increased bronchoalveolar lavage albumin concentrations. In the current study we examine whether cyclophosphamide treatment affects pulmonary glutathione stores or bronchoalveolar endoperoxide metabolic product levels and whether these effects may be related to acute lung injury caused by the drug. We show that cyclophosphamide treatment causes a dose-dependent reduction in pulmonary glutathione stores 4 h after drug administration. In addition, acute lung injury as the result of cyclophosphamide can be abrogated by coadministration of oxothiazolidine carboxylate, an intracellular cysteine delivery system that also reverses pulmonary glutathione depletion induced by cyclophosphamide in our study. Finally, cyclophosphamide treatment reduces prostaglandin E2 concentrations in bronchoalveolar lavage and alveolar macrophage culture supernatant in a dose-dependent fashion and increases bronchoalveolar thromboxane concentrations in low dose-treated animals. These effects are reversed to a variable degree by coadministration of oxothiazolidine carboxylate. Our study suggests in vivo pulmonary arachidonic acid metabolism and cyclophosphamide-induced acute lung injury are modulated by cellular glutathione stores. These findings may have important implications for the treatment of acute lung injury.  相似文献   

20.
Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号