首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Innate recognition and signaling by Toll-like receptors (TLRs) is facilitated by functionally associated coreceptors, although the cooperativity mechanisms involved are poorly understood. As a model we investigated TLR2 interactions with the GD1a ganglioside binding subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B(5)). Both LT-IIb-B(5) and a GD1a binding-defective mutant (LT-IIb-B(5)(T13I)) could modestly bind to TLR2, but only the wild-type molecule displayed a dramatic increase in TLR2 binding activity in the presence of GD1a (although not in the presence of irrelevant gangliosides). Moreover, fluorescence resonance energy transfer experiments indicated that LT-IIb-B(5) induces lipid raft recruitment of TLR2 and TLR1 and their clustering with GD1a, in contrast to the GD1a binding-defective mutant, which moreover fails to activate TLR2 signaling. LT-IIb-B(5)-induced cell activation was critically dependent upon the Toll/IL-1 receptor domain-containing adaptor protein, which was induced to colocalize with TLR2 and GD1a, as shown by confocal imaging. Therefore, GD1a provides TLR2 coreceptor function by enabling the ligand to recruit, bind, and activate TLR2. These findings establish a model of TLR2 coreceptor function and, moreover, suggest novel mechanisms of adjuvanticity by non-toxic derivatives of type II enterotoxins dependent upon GD1a/TLR2 cooperative activity.  相似文献   

2.
Type IIb heat-labile enterotoxin (LT-IIb) is produced by Escherichia coli 41. Restriction fragments of total cell DNA from strain 41 were cloned into a cosmid vector, and one cosmid clone that encoded LT-IIb was identified. The genes for LT-IIb were subcloned into a variety of plasmids, expressed in minicells, sequenced, and compared with the structural genes for other members of the Vibrio cholerae-E. coli enterotoxin family. The A subunits of these toxins all have similar ADP-ribosyltransferase activity. The A genes of LT-IIa and LT-IIb exhibited 71% DNA sequence homology with each other and 55 to 57% homology with the A genes of cholera toxin (CT) and the type I enterotoxins of E. coli (LTh-I and LTp-I). The A subunits of the heat-labile enterotoxins also have limited homology with other ADP-ribosylating toxins, including pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A. The B subunits of LT-IIa and LT-IIb differ from each other and from type I enterotoxins in their carbohydrate-binding specificities. The B genes of LT-IIa and LT-IIb were 66% homologous, but neither had significant homology with the B genes of CT, LTh-I, and LTp-I. The A subunit genes for the type I and type II enterotoxins represent distinct branches of an evolutionary tree, and the divergence between the A subunit genes of LT-IIa and LT-IIb is greater than that between CT and LT-I. In contrast, it has not yet been possible to demonstrate an evolutionary relationship between the B subunits of type I and type II heat-labile enterotoxins. Hybridization studies with DNA from independently isolated LT-II producing strains of E. coli also suggested that additional variants of LT-II exist.  相似文献   

3.
Oligonucleotide-directed mutagenesis was used to produce mutants in the hinge region of the regulatory subunit (R) of the Saccharomyces cerevisiae cAMP-dependent protein kinase. The mutant proteins were expressed in Escherichia coli, purified, urea treated to produce cAMP-free regulatory (R), and analyzed in vitro for catalytic (C) subunit inhibitory activity in the presence and absence of cAMP. When assayed in the absence of cAMP, wild type R dimer inhibited C with an IC50 of 40 nM. Replacement of amino acid residue Ser-145 (the autophosphorylation site of yeast R) with Ala or Gly produced mutants which were 2-10-fold better inhibitors of C, while replacement with Glu, Asp, Lys, or Thr produced mutants which were 2-5-fold worse inhibitors of C relative to wild type R. When assayed in the presence of cAMP, all R subunits had a decreased affinity for C subunit, with Ser-145 and Thr-145 undergoing autophosphorylation. These results suggest that the amino acid at position 145 of R contributes to R-C interaction and therefore influences the equilibrium of yeast protein kinase subunits in vitro.  相似文献   

4.
Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.  相似文献   

5.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

6.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

7.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

8.
The catalytic (C) subunit activity of the cAMP-dependent protein kinase (cAMP-PK) from the mutant cell lines, FIB4 and FIB6, is only 10% compared with the parent cell line, LLC-PK1 [Jans and Hemmings (1986) FEBS Lett. 205, 127-131]. In order to understand the nature of the mutant phenotypes the cAMP-PK from parent and mutant cell lines was studied in more detail. Analysis of mutant cAMP-PK activity by ion-exchange chromatography revealed that kinase activity associated with type I holoenzyme of both FIB4 and FIB6 was only 5% parental, and the activity of the type II holoenzyme was about 20% parental. The type I regulatory (RI) subunits associated with the type I were also found to be reduced by 70-80% in both mutants, whereas the type II R subunit levels were similar to that of the parent. The residual kinase activity associated with the type I holoenzyme from FIB4 and FIB6 could not be activated by cAMP whereas the type II holoenzyme was activated by cAMP (Ka of 5.5 X 10(-8) M), and showed normal affinities for Kemptamide and ATP. A polyclonal antibody to the catalytic subunit was used to quantify the level of this protein in wild-type and mutant cells. This analysis showed that FIB4 and FIB6 had nearly normal levels of C subunit, suggesting that the C subunit synthesized by the mutants was mostly inactive. As both type I and type II cAMP-PK holoenzymes were abnormal, the most likely explanation of the mutant phenotype is a defect either in the structural gene for the C subunit or in an enzyme involved in its posttranslational processing. However, a second lesion affecting the RI subunit cannot be ruled out at this moment.  相似文献   

9.
It is well documented that the beta-gene of the catalytic (C) subunit of protein kinase A encodes a number of splice variants. These splice variants are equipped with a variable N-terminal end encoded by alternative use of several exons located 5' to exon 2 in the human, bovine and mouse Cbeta gene. In the present study, we demonstrate the expression of six novel human Cbeta mRNAs that lack 99 bp due to loss of exon 4. The novel splice variants, designated CbetaDelta4, were identified in low amounts at the mRNA level in NTera2-N cells. We developed a method to detect CbetaDelta4 mRNAs in various cells and demonstrated that these variants were expressed in human and Rhesus monkey brain. Transient expression and characterization of the CbetaDelta4 variants demonstrated that they are catalytically inactive both in vitro against typical protein kinase A substrates such as kemptide and histone, and in vivo against the cAMP-responsive element binding protein. Furthermore, co-expression of CbetaDelta4 with the regulatory subunit (R) followed by kinase activity assay with increasing concentrations of cAMP and immunoprecipitation with extensive washes with cAMP (1 mm) and immunoblotting demonstrated that the CbetaDelta4 variants associate with both RI and RII in a cAMP-independent fashion. Expression of inactive C subunits which associate irreversibly with R may imply that CbetaDelta4 can modulate local cAMP effects in the brain by permanent association with R subunits even at saturating concentrations of cAMP.  相似文献   

10.
Cyclic nucleotide binding and activation properties of cAMP-dependent protein kinases from five independent mutants of S49 mouse lymphoma cells were studied. These mutants were all hemizygous for expression of mutant regulatory (R) subunits of the type I kinase with lesions that altered the electrostatic charge of R subunit: lesions in three of the mutants mapped to cAMP-binding site A, and those in two of the mutants mapped to cAMP-binding site B. A nucleotide mismatch assay using 32P-labeled cRNA and ribonuclease A confirmed and refined localization of the mutations to single amino acid residues implicated in cAMP binding. R subunits from all mutants retained the ability to bind cAMP, but binding behaved as if it were entirely to nonmutated sites: 1) relative affinities of 11 adenine-modified derivatives of cAMP for mutant enzymes were identical to their relative affinities for the site of wild-type kinase that corresponded to the nonmutated site of the mutant; 2) the potencies of these analogs as activators of mutant kinases were strictly correlated with their binding affinities (for wild-type enzyme activation potencies were correlated with mean affinities of the analogs for cAMP-binding sites A and B); 3) combinations of analogs with strong preferences for opposite cAMP-binding sites in wild-type kinase showed no synergism in activating mutant kinases; 4) dissociation of cAMP from mutant kinases was monophasic; and 5) high salt accelerated dissociation of cAMP from kinases with site B lesions but retarded dissociation from those with site A lesions.  相似文献   

11.
The regulatory (R) subunit of cAMP-dependent protein kinase I has been expressed in Escherichia coli, and oligonucleotide-directed mutagenesis was initiated in order to better understand structural changes that are induced as a consequence of cAMP-binding. Photoaffinity labeling of the type I holoenzyme with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371 [Bubis, J., & Taylor, S.S. (1987) Biochemistry 26, 3478-3486]. The site that was targeted for mutagenesis was Tyr-371. The intention was to establish whether the interactions between the tyrosine ring and the adenine ring of cAMP are primarily hydrophobic in nature or whether the hydroxyl group is critical for cAMP binding and/or for inducing conformational changes. A single base change converted Tyr-371 to Phe. This yielded an R subunit that reassociated with the catalytic subunit to form holoenzyme and bound 2 mol of cAMP/mol of R monomer. The cAMP binding properties of the holoenzyme that was formed with this mutant R subunit, however, were altered: (a) the apparent Kd(cAMP) was shifted from 16 to 60 nM; (b) Scatchard plots showed no cooperativity between the cAMP binding sites in the mutant in contrast to the positive cooperativity that is observed for the wild-type holoenzyme; (c) the Hill coefficient of 1.6 for the wild-type holoenzyme was reduced to 0.99. The Ka's for activation by cAMP were altered in the mutant holoenzyme in a manner that was proportional to the shift in Kd(cAMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
E A First  S S Taylor 《Biochemistry》1989,28(8):3598-3605
The catalytic subunit of cAMP-dependent protein kinase contains only two cysteine residues, and the side chains of both Cys 199 and Cys 343 are accessible. Modification of the catalytic subunit by a variety of sulfhydryl-specific reagents leads to the loss of enzymatic activity. The differential reactivity of the two sulfhydryl groups at pH 6.5 has been utilized to selectively modify each cysteine with the following fluorescent probes: 3,6,7-trimethyl-4-(bromomethyl)-1,5-diazabicyclo[3.3.0]octa-3,6-diene- 2,8-dione, N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, and 4-[N-[(iodoacetoxy)ethyl]-N-methyl-amino]-7-nitrobenz-2-oxa-1,3-diazole. The most reactive cysteine is Cys 199, and exclusive modification of this residue was achieved with each reagent at pH 6.5. Modification of Cys 343 required reversible blocking of Cys 199 with 5,5'-dithiobis(2-nitrobenzoic acid) followed by reaction of Cys 343 with the fluorescent probe at pH 8.3. Treatment of this modified catalytic subunit with reducing reagent restored catalytic activity by unblocking Cys 199. In contrast, catalytic subunit that was selectively labeled at Cys 199 by the fluorescent probes was catalytically inactive. Even though Cys 199 is presumably close to the interaction site between the regulatory subunit and the catalytic subunit, all of the modified C-subunits retained the capacity to aggregate with the type II regulatory subunit in the absence of cAMP, and the resulting holoenzymes were dissociated in the presence of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A short sequence motif rich in glycine residues, Gly-X-X-X-X-Gly-Lys-Thr/Ser, has been found in many nucleotide-binding proteins including the beta subunit of Escherichia coli H(+)-ATPase (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residues 149-156). The following mutations were introduced in this region of the cloned E. coli unc operon carried by a plasmid pBWU1: Ala-151----Pro or Val; insertion of a Gly residue between Lys-155 and Thr-156; and replacement of the region by the corresponding sequence of adenylate kinase (Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr) or p21 ras protein (ras) (Gly-Ala-Gly-Gly-Val-Gly-Lys-Ser). All F0F1 subunits were synthesized in the deletion strain of the unc operon-dependent on pBWU1 with mutations, and essentially the same amounts of H(+)-ATPase with these mutant beta subunits were found in membranes. The adenylate kinase and Gly insertion mutants showed no oxidative phosphorylation or ATPase activity, whereas the Pro-151 mutants had higher ATPase activity than the wild-type, and the Val-151 and ras mutants had significant activity. It is striking that the enzyme with the ras mutation (differing in three amino acids from the beta sequence) had about half the membrane ATPase activity of the wild-type. These results together with the simulated three-dimensional structures of the wild-type and mutant sequences suggest that in mutant beta subunits with no ATPase activity projection of Thr-156 residues was opposite to that in the wild-type, and that the size and direction of projection of residue 151 are important for the enzyme activity.  相似文献   

15.
Toll-like receptors (TLRs) direct a proinflammatory program in macrophages. One mediator whose generation is induced by TLR ligation is prostaglandin E(2) (PGE(2)), which is well known to increase intracellular cAMP upon G protein-coupled receptor ligation. How PGE(2)/cAMP shapes the nascent TLR response and the mechanisms by which it acts remain poorly understood. Here we explored PGE(2)/cAMP regulation of NO production in primary rat alveolar macrophages stimulated with the TLR4 ligand LPS. Endogenous PGE(2) synthesis accounted for nearly half of the increment in NO production in response to LPS. The enhancing effect of PGE(2) on LPS-stimulated NO was mediated via cAMP, generated mainly upon ligation of the E prostanoid 2 receptor and acting via protein kinase A (PKA) rather than via the exchange protein activated by cAMP. Isoenzyme-selective cAMP agonists and peptide disruptors of protein kinase A anchoring proteins (AKAPs) implicated PKA regulatory subunit type I (RI) interacting with an AKAP in this process. Gene knockdown of potential RI-interacting AKAPs expressed in alveolar macrophages revealed that AKAP10 was required for PGE(2) potentiation of LPS-induced NO synthesis. AKAP10 also mediated PGE(2) potentiation of the expression of cytokines IL-10 and IL-6, whereas PGE(2) suppression of TNF-α was mediated by AKAP8-anchored PKA-RII. Our data illustrate the pleiotropic manner in which G protein-coupled receptor-derived cAMP signaling can influence TLR responses in primary macrophages and suggest that AKAP10 may coordinate increases in gene expression.  相似文献   

16.
Using oligonucleotide-directed mutagenesis of the gene encoding the small subunit (rbcS) from Anacystis nidulans mutant enzymes have been generated with either Trp-54 of the small subunit replaced by a Phe residue, or with Trp-57 replaced by a Phe residue, whereas both Trp-54 and Trp-57 have been replaced by Phe residues in a double mutant. Trp-54 and Trp-57 are conserved in all amino acid sequences or the small subunit (S) that are known at present. The wild-type and mutant forms of Rubisco have all been purified to homogeneity. The wild-type enzyme, purified from Escherichia coli is indistinguishable from enzyme similarly purified from A. nidulans in subunit composition, subunit molecular mass and kinetic parameters (Vmax CO2 = 2.9 U/mg, Km CO2 = 155 microM). The single Trp mutants are indistinguishable from the wild-type enzyme by criteria (a) and (b). However, whereas, Km CO2 is also unchanged, Vmax CO2 is 2.5-fold smaller than the value for the wild-type enzyme for both mutants, demonstrating for the first time that single amino acid replacements in the non-catalytic small subunit influence the catalytic rate of the enzyme. The specificity factor tau, which measures the partitioning of the active site between the carboxylase and oxygenase reactions, was found to be invariant. Since tau is not affected by these mutations we conclude that S is an activating not a regulating subunit.  相似文献   

17.
After removal of total B subunit and heat-labile enterotoxin (LT) from crude cell extracts of enterotoxigenic Escherichia coli (HB 101-EWD 299) by Bio-gel A 5 m column chromatography, the crude cell extract was shown to contain a free A subunit (A' subunit) that did not bind to the coligenoid of the B subunits. The A' subunit was found to be immunologically identical to the A subunit of holo-LT and was purified to show only one band in SDS-poly-acrylamide gel electrophoresis (PAGE). The mobility of the A' subunit was identical to that of the A subunit of holo-LT. The pI value of the A' subunit was also the same as that of the A subunit of holo-LT. These data suggest that in enterotoxigenic E. coli there is free A subunit which may be involved in formation of holo-LT, analogously to free B subunit (coligenoid), and that the free A subunit is physicochemically and immunologically identical to the A subunit of holo-LT.  相似文献   

18.
Mutations in the cyclic nucleotide binding domain (CNBD) of the human ether-a-go-go-related gene (HERG) K+ channel are associated with LQT2, a form of hereditary Long QT syndrome (LQTS). Elevation of cAMP can modulate HERG K+ channels both by direct binding and indirect regulation through protein kinase A. To assess the physiological significance of cAMP binding to HERG, we introduced mutations to disrupt the cyclic nucleotide binding domain. Eight mutants including two naturally occurring LQT2 mutants V822M and R823W were constructed. Relative cAMP binding capacity was reduced or absent in CNBD mutants. Mutant homotetramers carry little or no K+ current despite normal protein abundance and surface expression. Co-expression of mutant and wild-type HERG resulted in currents with altered voltage dependence but without dominant current suppression. The data from co-expression of V822M and wild-type HERG best fit a model where one normal subunit within a tetramer allows nearly normal current expression. The presence of KCNE2, an accessory protein that associates with HERG, however, conferred a partially dominant current suppression by CNBD mutants. Thus KCNE2 plays a pivotal role in determining the phenotypic severity of some forms of LQT2, which suggests that the CNBD of HERG may be involved in its interaction with KCNE2.  相似文献   

19.
Molecular mechanisms of the immunomodulatory effects of hormone kisspeptin on the formation and functional activity of inducible regulatory T cells (iTreg) and lymphocytes T helpers-17 (Th17) were studied using inhibitory analysis and direct measurements of the intracellular cAMP level. We found that kisspeptin in concentrations typical of the II and III trimester of pregnancy, increases the iTreg formation and at the same time inhibits the induction of Th17. Regardless of the concentration used, kisspeptin increased the IL-10 production and decreased the IL-17A production in the female CD4+ T lymphocytes. Correlation analysis revealed a statistically significant negative relationship between the percentages of iTreg and Th17, as well as between the IL-10 and IL-17A levels upon application of kisspeptin in the concentration of 9.6 pmol/L. In addition, in the presence of kisspeptin, a significant positive correlation was found between the percentage of iTreg and levels of IL-10 produced by CD4+ T lymphocytes of women. Our observations indicated that implementation of the kisspeptin immunomodulatory effects is associated with increased levels of cAMP and depends on the activity of the protein binding cAMP-responsive element (CREB) and kinase MAPK/ERK (MEK1/2). A direct correlation between increased levels of cAMP and the number iTreg was demonstrated.  相似文献   

20.
Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号