首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
V Saudek  J T Pelton 《Biochemistry》1990,29(19):4509-4515
Sequence-specific assignment of the 1H NMR spectrum of the 36 amino acid polypeptide porcine neuropeptide Y (pNPY) at pH 3.1 is reported. It was achieved by use of standard two-dimensional techniques and by a combination of the sequential and main-chain-directed assignment strategies. The secondary structure was derived from inspection of the nuclear Overhauser spectra, slow hydrogen-deuterium exchange effects, chemical shifts of main-chain HA resonances, and coupling constants. These studies indicate that the C-terminal segment (residues 11-36) folds into an amphiphilic alpha-helix; the N-terminal segment, containing three prolines in both cis and trans conformations, assumes no regular structure. CD studies of pNPY at pH 3.1 and 7.4 show an increase in ordered structure at neutral pH. The difference spectrum, however, is typical of an alpha-helix and suggests a stabilization of residues 11-36, possibly via Maxfield-Scheraga pair interactions involving side-chain residues. This is supported by a comparison of the one-dimensional 1H NMR spectra of pNPY at pH 3.1 and 7.4, where no remarkable differences are observed.  相似文献   

2.
Yuan C  Byeon IJ  Poi MJ  Tsai MD 《Biochemistry》1999,38(10):2919-2929
Previous NMR studies have shown that many phospholipase A2 (PLA2, from bovine pancreas, overexpressed in Escherichia coli) mutants display some properties reminiscent of a molten globule state. Further NMR analyses for some of the mutants indicated that formation of the "molten globule-like state" is a pH-dependent phenomenon. The mutants I9Y and I9F showed perturbed NMR properties throughout the pH range studied, while the mutants H48A and C44A/C105A displayed native-like spectra at neutral pH but molten globule-like ones under acidic conditions, with a "transition pH" around 4. On the other hand, wild-type PLA2 exhibits exceptional pH stability and turns into a similar molten globule-like state only under highly acidic conditions such as 1 M HCl. The H48A mutant was used to rigorously establish the property of the molten globule-like state of PLA2 mutants. The results of far-UV CD, near-UV CD, and ANS-binding fluorescence suggest that H48A retains native-like secondary structures but loses tertiary structure during the conformational transition. However, the tertiary structure is not completely lost, as evidenced by the retention of some long-range NOEs in two-dimensional NOESY spectra. The conclusion was further substantiated by three-dimensional NOESY-HSQC experiments on a 15N-labeled H48A sample. It was revealed that the molten globule-like state at mildly acidic pH retained some rigid tertiary structure, which consisted of partial alpha-helix II (Y52-L58), alpha-helix III (D59-V63), beta-wing (S74-S85) and partial alpha-helix IV (A90-N97). These residual tertiary structures grouped in half of the protein could be attributed to stabilization by some of the disulfide bonds. The extreme sensitivity of the PLA2 structure to site-directed mutagenesis is unprecedented. It is interesting to note that most of the functional residues (the active site, the hydrophobic channel, the interfacial binding site, and the calcium-binding loop) are located in the remainder of the protein, which is well disrupted in tertiary interactions.  相似文献   

3.
The study of membrane protein structure and function requires their high-level expression and purification in fully functional form. We previously used a tetracycline-inducible stable mammalian cell line, HEK293S-TetR, for regulated high-level expression of G-protein coupled receptors. We here report successfully using this method for high-level expression of de novo oligo-DNA assembled human CD81 gene. CD81 is a member of the vital tetraspanin membrane protein family. It has recently been identified as the putative receptor for the Hepatitis C Virus envelope E2 glycoprotein (HCV-E2). In this study we used a single-step rho-1D4-affinity purification method to obtain >95% purity from HEK293S-TetR-inducible stable cell lines. Using ELISA assay we determined that the affinity of the purified CD81 receptor for HCV-E2 protein is 3.8+/-1.2 nM. Using fluorescent confocal microscopy we showed that the inducibly overexpressed CD81 receptor in HEK293S-TetR cells is correctly located on the plasma membrane. We demonstrated that the combination of high-level expression of CD81 with efficient single-step immunoaffinity purification is a useful method for obtaining large quantities of CD81 membrane receptor suitable for detailed structural analyses of this elusive tetraspanin protein. Furthermore, this simple single-step immunoaffinity purification to high purity of membrane protein could be useful broadly for other membrane protein purifications, thus accelerating the determination of structures for large numbers of difficult-to-obtain membrane proteins.  相似文献   

4.
The first Y(5) receptor-selective analog of neuropeptide Y (NPY), [Ala(31),Aib(32)]NPY, has been developed and biologically characterized. Using competition binding assays on cell lines that express different Y receptors, we determined the affinity of this analog to be 6 nm at the human Y(5) receptor, >500 nm at the Y(1) and Y(2) receptors, and >1000 nm at the Y(4) receptor. Activity studies performed in vitro using a cAMP enzyme immunoassay, and in vivo using food intake studies in rats, showed that the peptide acted as an agonist. Further peptides obtained by the combination of the Ala(31)-Aib(32) motif with chimeric peptides containing segments of NPY and pancreatic polypeptide displayed the same selectivity and even higher affinity (up to 0.2 nm) for the Y(5) receptor. In vivo administration of the new Y(5) receptor-selective agonists significantly stimulated feeding in rats. The NMR solution structures of NPY and [Ala(31),Aib(32)]NPY showed a different conformation in the C-terminal region, where the alpha-helix of NPY was substituted by a more flexible, 3(10)-helical turn structure.  相似文献   

5.
The solution structure of sarafotoxin-6b in water has been determined using high-resolution NMR spectroscopy. 127 proton-proton distance measurements and three phi dihedral angle constraints derived from NMR spectra were used to calculate the solution structure using a combination of distance geometry and restrained molecular dynamics. The major structural feature of the resulting family of five structures was a right-handed alpha-helix extending from K9 to Q17. In contrast, the C-terminal region of the peptide appears not to adopt a preferred conformation in aqueous solution. The present structure is compared with those previously determined for endothelin peptides in non-aqueous solvents.  相似文献   

6.
Conformational studies were performed on a synthetic pentacosapeptide representing the RNA-binding N-terminal region of the coat protein of cowpea chlorotic mottle virus. The effects of ionic strength, addition of (oligo)phosphates and temperature on the conformation of this highly positively charged peptide containing six arginines and three lysines were studied. CD experiments show that the peptide has 15-18% alpha-helical conformation and about 80% random-coil conformation in the absence of inorganic salt at 25 degrees C, and 20-21% alpha-helical conformation under the same conditions at 10 degrees C. Addition of inorganic salts results in an increase of alpha-helix content, up to 42% in the presence of oligophosphate with an average chain length of 18 phosphates, which was used as an RNA analog. NMR experiments show that the alpha-helix formation starts in the region between Thr9 and Gln12, and is extended in the direction of the C terminus. Relaxation measurements show that binding to oligophosphates of increasing length results in reduced internal mobilities of the positively charged side chains of the arginyl and lysyl residues and of the side chain of Thr9 in the alpha-helical region. The alpha-helix formation in the N-terminal part of this viral coat protein upon binding of phosphate groups to the positively charged side chains is suggested to play an essential role in RNA binding.  相似文献   

7.
To better understand the structural basis for the binding of proteinase-transformed human alpha2-macroglobulin (alpha2M) to its receptor, we have used three-dimensional multinuclear NMR spectroscopy to determine the secondary structure of the receptor binding domain (RBD) of human alpha2M. Assignment of the backbone NMR resonances of RBD was made using 13C/15-N and 15N-enriched RBD expressed in Escherichia coli. The secondary structure of RBD was determined using 1H and 13C chemical shift indices and inter- and intrachain nuclear Overhauser enhancements. The secondary structure consists of eight strands in beta-conformation and one alpha-helix, which together comprise 44% of the protein. The beta-strands form three regions of antiparallel beta-sheet. The two lysines previously identified as being critical for receptor binding are located in (Lys1374), and immediately adjacent to (Lys1370) the alpha-helix, which also contains an (Arg1378). Secondary structure predictions of other alpha-macroglobulins show the conservation of this alpha-helix and suggest an important role for this helix and for basic residues within it for receptor binding.  相似文献   

8.
A radioimmunoassay for measurement of immunoreactive neuropeptide Y has been developed using antiserum from a rabbit (221) immunized with porcine neuropeptide Y. Antibody 221 has been characterized for both sensitivity and specificity. To determine the distribution of neuropeptide Y in the human gastrointestinal tract, fresh tissue specimens were separated by microdissection into the muscularis externa and the mucosa-submucosa. To examine the origin of neuropeptide Y in human colon, specimens of aganglionic and ganglionic colon were obtained from patients with Hirschsprung's disease. Immunoreactive neuropeptide Y in human gut was present in highest concentrations in the muscularis externa of the stomach and in lowest concentrations in the muscularis externa of the ileum and descending colon. Neuropeptide Y in the stomach was present in higher concentrations in the muscularis externa than in the mucosa-submucosa, but in the descending colon there were lower concentrations of neuropeptide Y in the muscularis externa than in the mucosa-submucosa. In Hirschsprung's disease, concentrations of neuropeptide Y were increased in aganglionic colon in both the muscularis externa and the mucosa-submucosa, compared to corresponding layers from proximal ganglionic colon. Extracts of the gastric muscularis externa and the colonic mucosa-submucosa were separated by C18 reverse-phase high-performance liquid chromatography. One major immunoreactive species was identified by radioimmunoassay which eluted in a position similar to synthetic human neuropeptide Y. These results demonstrated both regional and layer differences in concentrations of neuropeptide Y in human gut. Increased concentrations of neuropeptide Y in aganglionic colon from Hirschsprung's disease most likely result from enlargement of neuropeptide Y-containing extrinsic nerve fibers in both the mucosa-submucosa and the muscularis externa.  相似文献   

9.
Primary cultures of human monocyte-derived macrophages (n = 50) were characterized in order to use this cellular model to establish a proteomic map of macrophages. Peripheral blood mononuclear cells were isolated from healthy donors' blood using density gradient centrifugation. The cell culture quality was checked in respect of several morphological and molecular aspects.The homogeneity and purity of cells was assessed after 12 days' primary culture with phase microscopy, immunocytochemistry and flow cytometry. Monocytes were completely differentiated into macrophages within 12 days as shown by phase microscopy. On day 12, all cells expressed CD68 antigen and were negative for CD3. Flow cytometry experiments showed a purity of the primary culture on day 12, in a range between 76% and 98% of CD14+ cells. The functionality of cells was characterized for the presence of ECE-1 as an intracellular marker and for the presence of MMP-9 as a marker secreted into the culture medium. This study allowed to determine criteria of quality and functionality for the primary culture of monocyte-derived macrophages. Cultures meeting these criteria will be used for the proteomic analysis and the establishment of the reference map.  相似文献   

10.
The circular dichroism (CD) and Fourier transform infrared (FTIR) methods were applied to the conformational studies of alanine-rich peptide Ac-K-[A]11-KGGY-NH2 (where K is lysine, A is alanine, G is glycine and Y is tyrozyne) in water, methanol (MeOH) and trifluoroethanol (TFE). The analysis of CD-spectra of the peptide in water at different concentrations revealed that the secondary structure content depends on the peptide concentration and pH of the solution. The increase of the peptide concentration causes a decrease of alpha-helix content and, simultaneously, an increase of beta-sheet structure, while the unordered structure is the predominant one. Additional elements are discovered in MeOH and TFE but alpha-helix and beta-turns predominate. Moreover, in these solutions the percentage content of the secondary structure does not depend on the temperature. FTIR measurements, carried out at higher peptide concentration (about one order of magnitude) than these CD measurements mentioned above, revealed that in water solution the solid state beta-sheet, and aggregated structures, dominate. However, in TFE the most abundant are alpha-helix and beta-turns structures. The thioflavine T assay showed the tendency of the studied peptide for aggregate.  相似文献   

11.
N Khan  A Graslund  A Ehrenberg  J Shriver 《Biochemistry》1990,29(24):5743-5751
The solution structure of the 22-residue peptide hormone motilin has been studied by circular dichroism and two-dimensional 1H nuclear magnetic resonance spectroscopy. Circular dichroism spectra indicate the presence of alpha-helical secondary structure in aqueous solution, and the secondary structure can be stabilized with hexafluoro-2-propanol. Sequence-specific assignments of the proton NMR spectrum of porcine motilin in 30% hexafluoro-2-propanol have been made by using two-dimensional NMR techniques. All backbone proton resonances (NH and alpha CH) and most of the side-chain resonances have been assigned by using double-quantum-filtered COSY, RELAYED-COSY, and NOESY experiments. Simulations of NOESY cross-peak intensities as a function of mixing time indicate that spin diffusion has a relatively small effect in peptides the size of motilin, thereby allowing the use of long mixing times to confidently make assignments and delineate secondary structure. Sequential alpha CH-NH and NH-NH NOESY connectivities were observed over a significant portion of the length of the peptide. A number of medium-range NOESY cross-peaks indicate that the peptide is folded into alpha-helix from Glu9 to Lys20, which agrees favorably with the 50% helical content determined from CD measurements. The intensities of selected NOESY cross-peaks relative to corresponding diagonal peaks were used to estimate a rotational correlation time of approximately 2.5 ns for the peptide, indicating that the peptide exists as a monomer in solution under the conditions used here.  相似文献   

12.
Hinchliffe SJ  Morgan BP 《Biochemistry》2000,39(19):5831-5837
Formation of the membrane attack complex (MAC) of complement on host cells is inhibited by the glycosylphosphatidylinositol- (GPI-) anchored glycoprotein CD59. Published data on the active site of human CD59 are confusing. To clarify these data, we set out to elucidate the active site of a nonprimate CD59 molecule by site-directed mutagenesis. We also undertook to investigate a region of potential species selectivity, and to this end rat CD59 was chosen for all mutations. Our investigations confirmed the proposal that the active site of CD59 is the major hydrophobic groove, with mutations Y36A, W40A, and L54A ablating complement inhibitory function of CD59. Other mutations reducing the function of rat CD59 were I56E, D24A, and D24R. Importantly, mutations at one residue increased the function of rat CD59. The K48E mutation significantly increased function against human rat or rabbit serum, whereas the K48A mutation increased function against human serum alone. A similar mutation in human CD59 (N48E) had no effect on activity against human or rat serum but completely abolished all activity against rabbit serum. These findings suggest that the alpha-helix of human CD59, adjacent to the hydrophobic groove, influences the interaction between human CD59 and rabbit C8, C9, or both.  相似文献   

13.
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.  相似文献   

14.
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet.  相似文献   

15.
Thermodynamic characterization of the activation domain of human procarboxypeptidase A2, ADA2h, and its helix-engineered mutants was carried out by differential scanning calorimetry. The mutants were engineered by changing residues in the exposed face of the two alpha helices in order to increase their stability. At neutral and alkaline pH the three mutants, alpha-helix 1 (M1), alpha-helix 2 (M2) and alpha-helix 1 and alpha-helix 2 (DM), were more stable than the wild-type domain, in the order DM, M2, M1 and wild-type. Under these conditions the CD and NMR spectra of all the variants are very similar, indicating that this increase in stability is not the result of gross structural changes. Calorimetric analysis shows that the stabilizing effect of mutating the water-exposed surfaces of the helices seems to be mainly entropic, because the mutations do not change the enthalpy or the increase in heat capacity of denaturation. The unfolding behavior of all variants changes under acidic conditions: whereas wild-type and M1 have a strong tendency to aggregate, giving rise to a beta conformation upon unfolding, M2 and DM unfold reversibly, M2 being more stable than DM. CD and NMR experiments at pH 3.0 suggest that a region involving residues of the second and third beta strands as well as part of alpha-helix 1 changes its conformation. It seems that the enhanced stability of the altered conformation of M2 and DM reduces the aggregation tendency of ADA2h at acidic pH.  相似文献   

16.
Synthetic peptides reproducing both the native domain around the dibasic cleavage site of prosomatostatin, and mutated sequences there of, previously assayed in site-directed mutagenesis experiments, have been studied by CD in different solvent systems, such as water, TFE/H2O, MeCN/H2O and aqueous SDS, in order to ascertain the ability of each solvent to stabilize secondary structural motifs. A combination of deconvolution methods and empirical calculations, that allow subtraction of the contributions due to unordered structures from the spectra, suggests that mainly two distinct families of ordered conformers containing alpha-helix and/or structurally different beta-turns are present in solution, the relative stability of the different conformers depending on the nature of the solvent. The presence of beta-turns is in line with a previous NMR study in DMSO and DMSO/H2O. Comparison of the CD spectra in aqueous SDS of peptides undergoing processing with a sequence not processed in vivo shows that only the latter possesses a stable and detectable alpha-helix population. This observation suggests that the structuration involving beta-turns but no alpha-helix, which was observed by CD both in SDS and organic solvent/H2O mixtures at high water contents, might be of biological significance. The similarity of this structuration to molecular models obtained from NMR data in DMSO and DMSO/H2O is discussed.  相似文献   

17.
Y Pouny  Y Shai 《Biochemistry》1992,31(39):9482-9490
The influence of specific L- to D-amino acid substitutions on the interaction of pardaxin, a shark repellent neurotoxin polypeptide, with phospholipid vesicles and human erythrocytes is described. Twelve modified, truncated, or fluorescently labeled [with the fluorophore 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD) at their N-terminal amino acid] analogues of pardaxin were synthesized by a solid-phase method. Fluorescence measurements were used to monitor the interaction of the analogues with membranes [Rapaport, D., & Shai, Y. (1991) J. Biol. Chem. 266, 23769-23775]. Upon titration of solutions containing the NBD-labeled peptides with small unilamellar vesicles, the fluorescent emission spectra of all NBD-labeled peptides displayed similar blue-shifts, in addition to enhanced intensities, upon relocation of the probe to the more apolar environment. Binding isotherms were constructed from which surface partition constants, in the range of 10(4) M-1, were derived. The existence of an aggregation process, suggested by the shape of the binding isotherms, could be associated only with those analogues in which the N-helix (residues 1-9) was not perturbed. The alpha-helical content of the analogues was estimated by circular dichroism (CD) spectroscopy, both before and after binding to vesicles at neutral pH. The ability of the peptides to dissipate a diffusion potential and to cause calcein release, as well as to lyse human erythrocytes, served to functionally characterize the peptides. The results support a two alpha-helix model, with a bend at position 13, as best describing pardaxin in its membrane-bound state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a gamma-carboxylation recognition site that directs precursor forms of these proteins for posttranslational gamma-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing alpha-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues -13 to -3 form an amphipathic alpha-helix. NMR spectra indicate that a similar structure is present at 5 degrees C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the gamma-carboxylation recognition site, four residues (-18, -17, -16, and -15) are adjacent to the helical region and one residue (-10) is located within the helix. The potential role of the amphipathic alpha-helix in the gamma-carboxylation recognition site is discussed.  相似文献   

19.
Human brain S100b protein is a unique calcium-binding protein comprised of two identical 91-amino acid polypeptide chains that each contain two proposed helix-loop-helix (EF-hand) calcium-binding sites. In order to probe the assembly of the four calcium-binding sites in S100b, a peptide comprised of the N-terminal 46 residues of S100b protein was synthesized and studied by CD and 1H NMR spectroscopies as a function of concentration and temperature. At relatively high peptide concentrations and in the absence of calcium, the peptide exhibited a significant proportion of alpha-helix (45%). Decreasing the peptide concentration led to a loss of alpha-helix as monitored by CD spectroscopy and coincident changes in the 1H NMR spectrum. These changes were also observed by 1H NMR spectroscopy as a function of temperature where it was observed that the Tm of the peptide was lowered approximately 14 degrees C with a 17-fold decrease in peptide concentration. Sedimentation equilibrium studies were used to determine that the peptide formed a tetramer in solution in the absence of calcium. It is proposed that this tetrameric fold also occurs in S100b and is a result of the interaction of portions of all four calcium-binding sites.  相似文献   

20.
G S Yi  B S Choi    H Kim 《Biophysical journal》1994,66(5):1604-1611
The structure of a chemically synthesized 25-residue-long functional signal peptide of Escherichia coli ribose binding protein was compared with that of a nonfunctional mutant-signal peptide using circular dichroism and two-dimensional 1H NMR in solvents mimicking the amphiphilic environments. The functional peptide forms an 18-residue-long alpha-helix starting from the NH2-terminal region and reaching to the hydrophobic stretch in a solvent consisting of 10% dimethylsulfoxide, 40% water, and 50% trifluoroethanol (v/v). The nonfunctional mutant peptide, which contains a Pro at position 9 instead of a Leu in the wild-type peptide, does not have any secondary structure in that solvent but forms a 12-residue-long alpha-helix within the hydrophobic stretch in water/trifluoroethanol (50:50, v/v) solvent. It seems that the Pro-9 residue in the nonfunctional peptide disturbs the helix propagation from the hydrophobic stretch to the NH2-terminal region. Because both of these peptides have stable helices within the hydrophobic stretch, it may be concluded that the additional 2 turns of the alpha-helix in the NH2-terminal region of the wild-type signal peptide is important for its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号