首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kinetics of the trypsinogen activation by enterokinase and trypsin   总被引:1,自引:0,他引:1  
A global kinetic analysis of the mechanisms of the trypsinogen activation by enterokinase and trypsin is presented. The kinetic equations of both the transient-phase and the steady-state of these mechanisms are presented. In addition, we here derive the corresponding kinetic equations for the case in which the condition of rapid equilibrium prevails and we propose a kinetic data analysis. The significance of this approach to the treatment of other zymogen activation processes is discussed.  相似文献   

2.
Trypsin-mediated trypsinogen activation (autoactivation) facilitates digestive zymogen activation in the duodenum but may precipitate pancreatitis if it occurs prematurely in the pancreas. Autoactivation of human cationic trypsinogen is inhibited by a repulsive electrostatic interaction between the unique Asp218 on the surface of cationic trypsin and the conserved tetra-aspartate (Asp19-22) motif in the trypsinogen activation peptide (Nemoda, Z., and Sahin-Tóth, M. (2005) J. Biol. Chem. 280, 29645-29652). Here we describe that this interaction is regulated by chymotrypsin C (caldecrin), which can specifically cleave the Phe18-Asp19 peptide bond in the trypsinogen activation peptide and remove the N-terminal tripeptide. In contrast, chymotrypsin B, elastase 2A, or elastase 3A (proteinase E) are ineffective. Autoactivation of N-terminally truncated cationic trypsinogen is stimulated approximately 3-fold, and this effect is dependent on the presence of Asp218. Because chymotrypsinogen C is activated by trypsin, and chymotrypsin C stimulates trypsinogen activation, these reactions establish a positive feedback mechanism in the digestive enzyme cascade of humans. Furthermore, inappropriate activation of chymotrypsinogen C in the pancreas may contribute to the development of pancreatitis. Consistent with this notion, the pancreatitis-associated mutation A16V in cationic trypsinogen increases the rate of chymotrypsin C-mediated processing of the activation peptide 4-fold and causes accelerated trypsinogen activation in vitro.  相似文献   

3.
1. A powerful kinase which changes trypsinogen to trypsin was found to be present in the synthetic liquid culture medium of a mold of the genus Penicillium. 2. The concentration of kinase in the medium is increased gradually during the growth of the mold organism and continues to increase for some time even after the mold has ceased growing. 3. Mold kinase transforms trypsinogen to trypsin only in an acid medium. It differs thus from enterokinase and trypsin which activate trypsinogen best in a slightly alkaline medium. 4. The action of the mold kinase in the process of transformation of trypsinogen is that of a typical enzyme. The process follows the course of a catalytic unimolecular reaction, the rate of formation of a definite amount of trypsin being proportional to the concentration of kinase added. The ultimate amount of trypsin formed, however, is independent of the concentration of kinase used. 5. The formation of trypsin from trypsinogen by mold kinase is not accompanied by any measurable loss of protein. 6. The temperature coefficient of formation of trypsin from trypsinogen by mold kinase varies from Q 5–15 = 1.70 to Q 25–30 = 1.25 with a corresponding variation in the value of µ from 8100 to 4250. 7. Trypsin formed from trypsinogen by means of mold kinase is identical in crystalline form with the crystalline trypsin obtained by spontaneous autocatalytic activation of trypsinogen at pH 8.0. The two products have within the experimental error the same solubility and specific activity. A solution saturated with the crystals of either one of the trypsin preparations does not show any increase in protein concentration or activity when crystals of the other trypsin preparation are added. 8. The Penicillium mold kinase has a slight activating effect on chymo-trypsinogen the rate being only 1–2 per cent of that of trypsinogen. The activation, as in the case of trypsinogen, takes place only in an acid medium. 9. Mold kinase is rapidly destroyed when brought to pH 6.5 or higher, and also when heated to 70°C. In the temperature range of 50–60°C. the inactivation of kinase follows a unimolecular course with a temperature coefficient of Q 10 = 12.1 and µ = 53,500. The molecular weight of mold kinase, as determined by diffusion, is 40,000.  相似文献   

4.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca2+-dependence. Even though the two trypsinogens are approximately 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mm Ca2+- conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.  相似文献   

5.
Limited proteolysis is a highly specific irreversible process, which can serve to initiate physiological function by converting a precursor protein into a biologically active form. When the activating enzyme and the activated enzyme coincide, the process is an autocatalytic zymogen activation (i.e. reactions in which the zymogens serves as a substrate for the corresponding active enzyme). The activity of proteases is frequently regulated by the binding of specific protease inhibitors. Thus, to understand the biological regulation of proteolysis, one must understand the role of protease inhibitors. In the present study, a detailed kinetic analysis of autocatalytic reaction modulated by a reversible inhibitor is represented. On the basis of the kinetic equation, a novel procedure is developed to evaluate the kinetic parameters of the reaction. As an example of the application of this method, effects of acetamidine, p-amidinobenzamidine and benzamidine on the autoactivation of trypsinogen by trypsin were studied.  相似文献   

6.
Unlike bovine cationic trypsin, rat anionic trypsin retains activity at high pH. This alkaline stability has been attributed to stabilization of the salt bridge between the N-terminal Ile16 and Asp194 by the surface negative charge (Soman K, Yang A-S, Honig B, Fletterick R., 1989, Biochemistry 28:9918-9926). The formation of this salt bridge controls the conformation of the activation domain in trypsin. In this work we probe the structure of rat trypsinogen to determine the effects of the surface negative charge on the activation domain in the absence of the Ile16-Asp194 salt bridge. We determined the crystal structures of the rat trypsin-BPTI complex and the rat trypsinogen-BPTI complex at 1.8 and 2.2 A, respectively. The BPTI complex of rat trypsinogen resembles that of rat trypsin. Surprisingly, the side chain of Ile16 is found in a similar position in both the rat trypsin and trypsinogen complexes, although it is not the N-terminal residue and cannot form the salt bridge in trypsinogen. The resulting position of the activation peptide alters the conformation of the adjacent autolysis loop (residues 142-153). While bovine trypsinogen and trypsin have similar CD spectra, the CD spectrum of rat trypsinogen has only 60% of the intensity of rat trypsin. This lower intensity most likely results from increased flexibility around two conserved tryptophans, which are adjacent to the activation domain. The NMR spectrum of rat trypsinogen contains high field methyl signals as observed in bovine trypsinogen. It is concluded that the activation domain of rat trypsinogen is more flexible than that of bovine trypsinogen, but does not extend further into the protein core.  相似文献   

7.
Crystalline trypsinogen is most readily and completely transformed into trypsin by means of enterokinase in the range of pH 5.2–6.0 at 5°C. and at a concentration of trypsinogen of not more than 0.1 mg. per ml. The action of enterokinase under these conditions is that of a typical enzyme. The process follows closely the course of a catalytic unimolecular reaction, the rate of formation of trypsin being proportional to the concentration of enterokinase added and the ultimate amount of trypsin formed being independent of the concentration of enterokinase. The catalytic action of enterokinase on crystalline trypsinogen in dilute solution at pH more alkaline than 6.0 and in concentrated solution at pH even slightly below 6.0 is complicated by the partial transformation of the trypsinogen into inert protein which can no longer be changed into trypsin even by a large excess of enterokinase. This secondary reaction is catalyzed by the trypsin formed and the rate of the reaction is proportional to the concentration of trypsin as well as to the concentration of trypsinogen in solution. Hence under these conditions only a small part of the trypsinogen is changed by enterokinase into trypsin while a considerable part of the trypsinogen is transformed into inert protein, the more so the lower the concentration of enterokinase used. The kinetics of the formation of trypsin by means of enterokinase when accompanied by the formation of inert protein can be explained quantitatively on the theoretical assumption that both reactions are of the simple catalytic unimolecular type, the catalyst being enterokinase in the first reaction and trypsin in the second reaction.  相似文献   

8.
We have found that dietary protein markedly induced pancreatic serine protease activity via a mechanism independent of luminal trypsin activity in pancreaticobiliary-diverted (PBD) rats. The aim of this study was to examine the effects of dietary protein on the synthesis of trypsinogen isoforms by comparing in vivo incorporation of [35S] L-methionine into isoform proteins in PBD and sham-operated rats. A small duodenal segment including the ampulla of Vater was sectioned and transposed to the upper ileum with end-to-side anastomosis (PBD) or duodenal transection was followed by reanastomosis (sham) in male Sprague-Dawley rats. After recovery, PBD and sham rats were fed a 25% or 60% casein-sucrose-based diet (NC or HC) for 14 days. Rats were then intravenously injected with [35S] L-methionine (15 MBq/kg body weight) 30 mins before being sacrificed for analysis of pancreatic enzymes by two-dimensional SDS-polyacrylamide gel electrophoresis. By using electrophoresis with narrow range of isoelectric focusing (pI 4.5-5.5), five trypsinogen 2 (2-x) isoform spots were identified using both [35S] incorporation and Coomassie brilliant blue (CBB) staining in PBD rats, but not in sham rats. N-terminal sequences of these trypsinogen 2-x spots were identical to known rat trypsinogen 2 with the exception that the third valine was changed to isoleucine in one isoform. In PBD rats, feeding of HC specifically increased the [35S] and CBB intensities of these trypsinogen 2-x isoforms and trypsinogen 3. The degree of induction of the five trypsinogen 2-x molecules by HC varied greatly. Trypsinogen 1 and 4, which are the major trypsinogens in normal rats, showed no changes. We conclude that increases in synthesis of a few newly identified trypsinogen 2-x isoforms mainly contribute to the induction of trypsin activity in the pancreas by HC in PBD rats.  相似文献   

9.
The activation of canine anionic and cationic trypsinogen by enterokinase, trypsin, thrombin, plasmin and extracts from canine granulocytes were studied in vitro. Enterokinase activates both trypsinogens about 1000 times faster than trypsin. The enterokinase-catalyzed activation is not inhibited by the main serum protease inhibitors, alpha-macroglobulin and alpha 1-antitrypsin. alpha-Macroglobulin cannot inhibit the activation of the trypsinogens by trypsin but this reaction is completely inhibited by alpha 1-antitrypsin. The results are discussed in relation to the pathogenesis of acute pancreatitis.  相似文献   

10.
The effect of limited proteolysis on rabbit muscle creatine kinase.   总被引:4,自引:3,他引:1       下载免费PDF全文
We report a novel assay method for enterokinase capable of detecting approx. 1 fmol of enzyme. The method depends on quantification of the release of specifically radiolabelled activation peptides from bovine trypsinogen and is unaffected by trypsin inhibitors. The assay is applicable to biological fluids such as serum. The substrate was produced by selective epsilon-amidination of bovine trypsinogen followed by acetylation with [3H]acetic anhydride and deprotection. The assay has been used to study the effects of pH, Ca2+, ionic strength abd glycodeoxycholate on enterokinase activity.  相似文献   

11.
Autocatalytic zymogen activation is a phenomenon of great importance for understanding some fundamental physiological processes involved in the enzyme regulation of gastrointestinal-tract enzymes, blood coagulation, fibrinolysis and the complement system. Examples of such processes are the activation of prekallikrein, trypsinogen and pepsinogen, all of which are controlled by natural proteinase inhibitors. This work studies the kinetics of a general autocatalytic zymogen activation process overlapped by two two-step irreversible inhibitions, i.e. a linear mixed irreversible inhibition. The kinetic equations for the whole course of the reaction are derived for this mechanism. In addition, we determine the corresponding kinetics for a number of particular cases of the general model analyzed, i.e. for reversible and irreversible non-competitive, competitive and uncompetitive inhibition systems which are considered particular cases of the general mechanism studied. The kinetic behavior of the system is related to a parameter, a dimensionless quantity, which shows whether the inhibition or the activation route prevails, in a similar way to that which we have previously carried out for other mechanisms. Finally, based on the kinetic equations obtained, a procedure for discriminating between the different mechanisms considered is suggested. The results of this contribution can be directly applied to most physiological autocatalytic zymogen activations in the presence of an inhibitor, allowing their complete kinetic characterization and suggesting procedures for varying the relative weight of the catalytic and inhibition routes or for changing the predominant route.  相似文献   

12.
Bovine enterokinase (enteropeptidase) activates trypsinogen to trypsin at pH 8.0. In the presence of chicken ovomucoid, a stable complex of ovomucoid-trypsin is produced, inactivating trypsin and eliminating autoactivation of trypsinogen. The molecular size of trypsin (24,000 Da) is increased twofold on forming the ovomucoid-trypsin complex (52,000 Da). Size-exclusion chromatography on a Toya Soda TSK G2000SW column in an HPLC system and with computer-assisted analyses gives a direct quantitative determination of the amount of substrate (trypsinogen) and product (ovomucoid-trypsin). The rate of disappearance of substrate is equal to the rate of formation of product in agreement with kinetic theory. The simultaneous determination of both rates increases the reliability of the assay. The HPLC assay has an extended linear range for the velocity of the activation process as a function of enzyme concentration. The assay is reliable and accurate for highly purified preparations, samples at different steps in the purification scheme, and for a direct assay of the intestinal contents. The assay should be useful in clinical analyses.  相似文献   

13.
Proteolytic enzymes are usually biosynthesized as somewhat larger inactive precursors known as zymogens. These zymogens must undergo an activation process, usually a limited proteolysis, to attain their catalytic activity. When the activating enzyme and the activated enzyme coincide, the process is an autocatalytic zymogen activation. In the present study, a kinetic analysis of the entire progress curve for the autocatalytic zymogen activation reactions is presented. On the basis of the kinetic equations, a novel procedure is developed to evaluate the kinetic parameters of the reactions. This procedure is particularly useful for the fast zymogen autoactivation reactions. As two examples, the novel procedure is used to analyse the autocatalytic activation of bovine trypsinogen and human blood coagulation factor XII (Hageman factor).  相似文献   

14.
Crystalline trypsinogen is completely transformed into trypsin by means of trypsin in the presence of calcium salts. The process follows the course of a pure autocatalytic unimolecular reaction. In the absence of calcium salts, the autocatalytic formation of trypsin from trypsinogen is complicated by the transformation of part of the trypsinogen into an inert protein which cannot be changed into trypsin by any known means. Salts increase or decrease the rate of both reactions so that the ultimate amount of trypsin formed varies with the nature and concentration of the salt used. With equivalent concentrations of salt the percentage of trypsinogen changed into trypsin is greatest in the presence of calcium ion followed in order by strontium; magnesium and sodium; rubidium, ammonium, lithium, and potassium; caesium and barium. With the anions the largest percentage of trypsinogen transformed into trypsin was found with the acetate, sulfate, oxalate, citrate, tartrate, fluoride, and chloride ions followed in order by bromide, nitrate, and iodide. The formation of inert protein is completely suppressed by concentrations of calcium ion greater than 0.02 M.  相似文献   

15.
The activation of human trypsinogens 1 and 2 by porcine enterokinase at pH 5.6 shows that the two human zymogens are equivalent substrates for this enzyme and that both proteins are activated faster than the cationic bovine trypsinogen. At pH 8.0 and in the presence of 20 mM calcium the two human trypsinogens are activated by either human trypsin at the same rate but the affinity of both trypsins is higher for trypsinogen 1 than for trypsinogen 2. Two Ca2+ binding sites are identified in the two human zymogens and their pK(Ca2+) values determined. For trypsinogen 1 the values are respectively of 2.8 and 3.3 for the primary and secondary Ca2+ binding sites, and for trypsinogen 2 of 3.4 and 2.7. These values are markedly different from those obtained for bovine cationic trypsinogen, especially in the case of trypsinogen 1. These results point out a different degree of saturation of the calcium binding sites of the 2 human zymogens that must exist in physiological conditions, suggesting different biological activities of the two trypsinogens.  相似文献   

16.
1. The rate of tyrosinase formation has been calculated by coupling the activatory process of frog epidermis pro-tyrosinase by trypsin to the oxidation of L-DOPA to dopachrome. Under certain conditions ([trypsin]/[pro-tyrosinase] greater than or equal to 300), the lag period of the coupled reactions, tau, is independent of trypsin concentration. 2. The specific rate constant of tyrosinase formation at different temperatures has been calculated, ranging from 0.025 sec-1, at 5 degrees C to 0.248 sec-1, at 30 degrees C. 3. Thermodynamic parameters of the activatory process (delta G not equal to = + 18.5 kcal/mol; delta H not equal to = + 14.8 kcal/mol; delta S not equal to = -12.4 e.u.; Ea = + 15.3 kcal/mol), have been determined by the study of the system at different temperatures. These values are characteristic for a normal chemical reaction. 4. From these kinetic data, the order of products formation in the proteolytic step, can be determined, active tyrosinase being the last product released.  相似文献   

17.
A protease, `trypsinogenase', secreted in small amounts by the sea-urchin blastula, is assayed in two steps as an example of enzyme-amplifying kinetics. In reaction 1 the trypsinogenase catalyses the activation of trypsinogen to trypsin. In reaction 2 the trypsin catalyses the hydrolysis of N-α-toluene-p-sulphonylarginine methyl ester, at a rate that is linear with trypsinogenase concentration over a 20-fold range. Results are reproducible within a batch of zymogen, but each batch requires a separate standard curve.  相似文献   

18.
Two monoclonal antibodies (Mab) raised against human pancreatic trypsin 1, Mab G6 and A8, were previously isolated and characterized. The two Mab which recognize trypsinogen 1 are found to inhibit the activation of trypsinogen 1 by enterokinase. The inhibition of activation by the two Mab is concentration-dependent, rapid and virtually complete with Mab G6. Activation of trypsinogen 2 is totally inhibited by Mab G6, while Mab A8 has no effect on the activation of trypsinogen 2. The two monoclonal antibodies have opposite effects on the proteolytic activity of trypsin 1; Mab G6 increases proteolytic activity while Mab A8 inhibits trypsin activity by as much as 40%. This inhibition is concentration dependent but cannot account for the complete inhibition of activation of trypsinogen 1. Neither monoclonal antibody significantly inhibits the esterolytic activity of either form of human trypsin. Western-blot analysis of the reactivity of the two monoclonal antibodies with trypsinogens of various species shows that only Mab G6 cross-reacts with dog trypsinogen.  相似文献   

19.
Proteins with trypsin-like immunoreactivity (first detected by a specific immunoenzymatic assay) were isolated from CAPAN-1 and CFPAC-1 cell culture-conditioned media by chromatography on an immunoadsorbent prepared with a polyclonal antibody directed against trypsin 1. The adsorbed proteins were devoid of free trypsin activity but trypsin activity was present after enterokinase activation demonstrating that the immunoreactive trypsin present in cell supernatants corresponds to trypsinogens. When characterised by Western blotting using a monoclonal antibody directed against human trypsin 1 two protein bands corresponding to trypsinogen 1 (23 kDa) and trypsinogen 2 (25 kDa) gave a positive reaction. These results demonstrate the presence of trypsinogens 1 and 2 in CAPAN-1 and CFPAC-1 cells and in their culture-conditioned media.  相似文献   

20.
A T Brünger  R Huber  M Karplus 《Biochemistry》1987,26(16):5153-5162
The trypsinogen to trypsin transition has been investigated by a stochastic boundary molecular dynamics simulation that included a major portion of the trypsin molecule and the surrounding solvent. Attention focused on the "activation domain", which crystallographic studies have shown to be ordered in trypsin and disordered in its zymogen, trypsinogen. The chain segments that form the activation domain were found to exhibit large fluctuations during the simulation of trypsin. To model a difference between trypsin and trypsinogen, the N-terminal residues Ile-16 and Val-17 were removed in the former and replaced by water molecules. As a result of the perturbation, a structural drift of 1-2 A occurred that is limited to the activation domain. Glycine residues are found to act as hinges for the displaced chain segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号