首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We have isolated a murine cDNA, Mrad9, that is orthologous to the fission yeast rad9+ and human HRAD9 genes. Mrad9 encodes a 389 amino acid long, 42,032 Dalton protein that is 27% identical and 56% similar to Rad9p, and 82% identical and 88% similar to HRAD9, at the amino acid level. Expression of the Mrad9 cDNA in Schizosaccharomyces pombe rad9::ura4+ cells restores nearly wild-type levels of hydroxyurea resistance and early S phase checkpoint control to mutant fission yeast cell populations. However, UV resistance is only minimally restored, and mutant cells remain sensitive to gamma radiation. Mrad9 genomic DNA was isolated from a mouse 129/SvEv library. The Mrad9 gene was localized to a 15-kbp genomic DNA fragment, and contains 10 exons separated by 9 introns. Northern blot analysis indicates that the gene is expressed in many different tissues of the adult mouse, but the mRNA is most abundant in the heart and present at very low levels in the liver. These studies demonstrate the existence of a murine orthologue of the fission yeast rad9+ gene and underscore at least the partial evolutionary conservation of rad9+-dependent checkpoint control mechanisms. J. Cell. Physiol. 177:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Yeast and human Eme1 protein, in complex with Mus81, constitute an endonuclease that cleaves branched DNA structures, especially those arising during stalled DNA replication. We identified mouse Eme1, and show that it interacts with Mus81 to form a complex that preferentially cleaves 3'-flap structures and replication forks rather than Holliday junctions in vitro. We demonstrate that Eme1-/- embryonic stem (ES) cells are hypersensitive to the DNA cross-linking agents mitomycin C and cisplatin, but only mildly sensitive to ionizing radiation, UV radiation and hydroxyurea treatment. Mammalian Eme1 is not required for the resolution of DNA intermediates that arise during homologous recombination processes such as gene targeting, gene conversion and sister chromatid exchange (SCE). Unlike Blm-deficient ES cells, increased SCE was seen only following induced DNA damage in Eme1-deficient cells. Most importantly, Eme1 deficiency led to spontaneous genomic instability. These results reveal that mammalian Eme1 plays a key role in DNA repair and the maintenance of genome integrity.  相似文献   

3.
4.
5.
6.
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases.  相似文献   

7.
DNA double-strand breaks (DSBs) may be caused by normal metabolic processes or exogenous DNA damaging agents and can promote chromosomal rearrangements, including translocations, deletions, or chromosome loss. In mammalian cells, both homologous recombination and nonhomologous end joining (NHEJ) are important DSB repair pathways for the maintenance of genomic stability. Using a mouse embryonic stem cell system, we previously demonstrated that a DSB in one chromosome can be repaired by recombination with a homologous sequence on a heterologous chromosome, without any evidence of genome rearrangements (C. Richardson, M. E. Moynahan, and M. Jasin, Genes Dev., 12:3831-3842, 1998). To determine if genomic integrity would be compromised if homology were constrained, we have now examined interchromosomal recombination between truncated but overlapping gene sequences. Despite these constraints, recombinants were readily recovered when a DSB was introduced into one of the sequences. The overwhelming majority of recombinants showed no evidence of chromosomal rearrangements. Instead, events were initiated by homologous invasion of one chromosome end and completed by NHEJ to the other chromosome end, which remained highly preserved throughout the process. Thus, genomic integrity was maintained by a coupling of homologous and nonhomologous repair pathways. Interestingly, the recombination frequency, although not the structure of the recombinant repair products, was sensitive to the relative orientation of the gene sequences on the interacting chromosomes.  相似文献   

8.
Cell cycle checkpoints are evolutionarily conserved signaling pathways that uphold genomic integrity. Complete inactivation of the mouse checkpoint gene Hus1 results in chromosomal instability, genotoxin hypersensitivity, and embryonic lethality. To determine the functional consequences of partial Hus1 impairment, we generated an allelic series in which Hus1 expression was incrementally reduced by combining a hypomorphic Hus1 allele, Hus1(neo), with either wild-type or null (Hus1(Delta1)) alleles. Primary Hus1(neo/Delta1) embryonic fibroblasts exhibited spontaneous chromosomal abnormalities and underwent premature senescence, while higher Hus1 expression in Hus1(neo/neo) cells allowed for normal proliferation. Antioxidant treatment almost fully suppressed premature senescence in Hus1(neo/Delta1) cultures, suggesting a critical role for Hus1 in oxidative stress responses. Treatment of Hus1(neo/neo) and Hus1(neo/Delta1) cells with the DNA adducting agent benzo(a)pyrene dihydrodriol epoxide resulted in a loss of cell viability that was associated with S-phase DNA damage checkpoint failure. Likewise, the DNA polymerase inhibitor aphidicolin triggered increased cell death, chromosomal aberrations, and H2AX phosphorylation, a marker for double-stranded DNA breaks, in Hus1(neo/neo) and Hus1(neo/Delta1) cultures compared to controls. Despite these pronounced genome maintenance defects in cultured Hus1(neo/Delta1) and Hus1(neo/neo) cells, mice of the same genotypes were born at expected frequencies and appeared grossly normal. A significant increase in micronucleus formation was observed in peripheral blood cells from Hus1(neo/Delta1) mice, but reduced Hus1 expression did not cause an elevated predisposition to spontaneous tumor development or accelerate tumorigenesis in p53-deficient mice. These results identify differential effects of altered Hus1 gene dosage on genome maintenance during in vitro culture, genotoxic stress responses, embryonic development, and adult homeostasis.  相似文献   

9.
TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.  相似文献   

10.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3?/? cells. Notably, Ada3?/? cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G? or G? phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3?/? cells confirmed higher residual DNA damage in Ada3?/? cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

11.
BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ~20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division.  相似文献   

12.
p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.  相似文献   

13.
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ssODNs. The slower appearance of green fluorescent cells with sense ssODNs as compared to anti-sense ssODNs is consistent with physical incorporation of the ssODN into the genome. Thus, the supremacy of anti-sense ssODNs, previously reported by others, may be an artefact of early readout of the EGFP reporter. Importantly, gene correction by unmodified ssODNs only mildly affected the viability of targeted cells and did not induce genomic DNA double-stranded breaks (DSBs). In contrast, ssODNs that were end-protected by phosphorothioate (PTO) linkages caused increased H2AX phosphorylation and impaired cell cycle progression in both corrected and non-corrected cells due to induction of genomic DSBs. Our results demonstrate that the use of unmodified rather than PTO end-protected ssODNs allows stable gene modification without compromising the genomic integrity of the cell, which is crucial for application of ssODN-mediated gene targeting in (embryonic) stem cells.  相似文献   

14.
Distinct elements isolated from mouse genomic DNA confer on plasmid DNA the ability to persist at high copy numbers in mouse L fibroblasts (1). Field inversion gel electrophoresis demonstrated that - in contrast to our previous assumption - the persisting plasmid DNA does not exist extrachromosomally but as clusters of tandem repeats integrated into genomic DNA. Digestion with restriction endonucleases that do not cut within the plasmid DNA results in fragments of 50-300 kb in length indicating reiteration of 10-50 plasmid DNA molecules. Restriction with several enzymes that cut once or twice within the plasmid sequences lead to fragment(s) indicative for head-to-tail tandem repeats. In situ hybridization revealed signals for a long homogeneously staining region (HSR) in one or two chromosomes per cell nucleus. Possibilities how these elements could act in the establishment and/or maintenance of the head-to-tail polymers of plasmid DNA in mouse cells are discussed.  相似文献   

15.
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9 -/- MES and Mdc1 -/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9 -/- MES. As the exposure to SMG was prolonged, Rad9 -/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9 -/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1 -/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1 -/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.  相似文献   

16.
Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following γ-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EμMyc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.  相似文献   

17.
The Drosophila melanogaster warts/lats tumour suppressor has two mammalian counterparts LATS1/Warts-1 and LATS2/Kpm. Here, we show that mammalian Lats orthologues exhibit distinct expression profiles according to germ cell layer origin. Lats2(-/-) embryos show overgrowth in restricted tissues of mesodermal lineage; however, lethality ultimately ensues on or before embryonic day 12.5 preceded by defective proliferation. Lats2(-/-) mouse embryonic fibroblasts (MEFs) acquire growth advantages and display a profound defect in contact inhibition of growth, yet exhibit defective cytokinesis. Lats2(-/-) embryos and MEFs display centrosome amplification and genomic instability. Lats2 localizes to centrosomes and overexpression of Lats2 suppresses centrosome overduplication induced in wild-type MEFs and reverses centrosome amplification inherent in Lats2(-/-) MEFs. These findings indicate an essential role of Lats2 in the integrity of processes that govern centrosome duplication, maintenance of mitotic fidelity and genomic stability.  相似文献   

18.
Marple T  Li H  Hasty P 《Mutation research》2004,554(1-2):253-266
SNP analysis has come to the forefront of genomics since the mouse and human genomes have been sequenced. High throughput functional screens are necessary to evaluate these sequence databases. Described here is a genotoxic screen: a rapid method that determines the cellular dose-response to a wide range of agents that either damage DNA or alter basic cellular pathways important for maintaining genomic integrity. Importantly, a single person utilizing standard tissue culture equipment may perform these assays composed of 20 agents that attack genomic integrity or maintenance at many different levels. Thus, a small lab may perform this screen to determine the integrity of a wide range of DNA repair, chromatin metabolism, and response pathways without the limitations of investigator bias. A genotoxic screen will be useful when analyzing cells with either known genetic alterations (generated directly by the investigator or derived from individuals with known mutations) or unknown genetic alterations (cells with spontaneous mutations such as cancer-derived cells). Screening many genotoxins at one time will aid in determining the biological importance of these altered genes. Here we show the dose-response curves of mouse embryonic stem (ES) cells and HeLa cells exposed to 20 genotoxic agents. ES cells were chosen since they are amenable to genetic alteration by the investigator. HeLa cells were chosen since they were derived from cancer and are commonly used. Comparing the dose-response curves of these two cell lines show their relative sensitivity to these agents and helps define their genotoxic profile. As a part of phenomics, a large genotoxic profile database for cancer-derived cells, when integrated with other databases such as expression profiles and comparative genomic hybridization, may aid in maximizing the effectiveness of developing anti-cancer protocols.  相似文献   

19.
20.
Wang Y  An L  Jiang Y  Hang H 《PloS one》2011,6(12):e29214
There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号