首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
Standard building blocks of proteins--closed loops of 25-30 amino acid residues--have been recently discovered and further characterized by combined efforts of several laboratories. New challenging views on the protein structure, folding, and evolution are introduced by these studies. In particular, the role of van der Waals contacts in protein stability is better understood. They can be considered as locks closing the polypeptide chain returns and forming the loop-n-lock elements. The linearity of the arrangement of the standard loops in the proteins has important evolutionary implications. Selection pressure to maintain the loops of nearly standard size is reflected in the protein sequences as characteristic distance between hydrophobic residues, equal to the loop end-to-end distance. Further characterization of the loop-n-lock units reveals several sequence/structure prototypes, which suggests a new basis for protein classification. The following is a review of these studies.  相似文献   

2.
Analysis of crystallized protein structures suggests that globular proteins are organized as consecutively connected units of 25-35 residues. These units are closed loops, that is returns of the polypeptide chain trajectory to a close contact with itself. This universal feature of apparently polymer-statistical nature is a basis for a principally novel view on the globular proteins as loop fold structures. The same unit size has been detected in protein sequences translated from complete prokaryotic genomes by positional autocorrelation analysis, which strongly indicates the evolutionary connection of the units. The units are further characterized by prototype sequences matching to their numerous derivatives in the translated genomes. The matches to five strongest prokaryotic prototypes and three prototypes of C. elegans are identified in the sequences of crystallized proteins, and their structures analyzed. Corresponding segments of the polypeptide chains in majority of cases form closed loops, though evolutionary fate of every prototype element is shown to be rather diverse. Then loop ends can be separated by a sequence-wise distant segments and stabilized by the spatial interactions in the context of the overall globular structure. The units belong to a presumably limited spectrum of the sequence prototypes, full repertoire of which would constitute a proteomic code.  相似文献   

3.
Universal scale of the sequence conservation has been recently introduced based on omnipresence of the protein sequence motifs across species. A large spectrum of short sequences, up to eight residues has been found to reside in all or almost all prokaryotic organisms. By this discovery a principally novel quantitative approach is introduced to the problem of reconstruction of the last universal common ancestor (LUCA). The most conserved elements (protein modules) with defined structures and sequences harboring the omnipresent motifs are outlined in this work, by combining the sequence and protein crystal structure data. The structurally conserved modules involve 25–30 amino acid residues and have appearance of closed loops, loop-n-lock structures. This confirms earlier conclusions on the loop-fold structure of globular proteins. Many of the topmost conserved modules represent the primary closed loop prototypes, that have been derived by whole genome sequence searches. The data presented, thus, make a basis for further developments toward the earliest stages of protein evolution. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

4.
Recent sequence analysis of complete prokaryotic proteomes suggests that in early evolutionary stages proteins were rather small, of the size 25-35 amino acids. Corroborating evidence comes from protein crystal data, which indicate this size for closed loops--universal structural units of globular proteins. In the latest development we were able to derive and structurally characterize several sequence/structure prototypes apparently representing early protein units. Structurally the prototypes appear as closed loops stabilized by end-to-end van der Waals interactions. While nearly standard in size the loops are highly diverse in terms of their secondary structure. A presentation of the protein as an assembly of descendants of the prototypes, the first of its kind, is described in detail here. The sequence and structure of the ATP-binding subunit of histidine permease of S. typhimurium is shown to contain several modified copies of different prototype elements, closed loops, and, thus, can be spelled as: x-PI-x-PIV-PVI-PII-PVII-x, where PI-PVII are the prototype elements. This study sets up the basic principles for the sequence/structure prototype spelling of globular proteins.  相似文献   

5.
Proteomic code     
On the basis of recent fundamentally novel developments in the protein structure a proteomic code is suggested, that would potentially allow to describe sequence, structure, and function of proteins by a spectrum of elementary loop-n-lock units. All major characteristics of the nearly standard units are described, and first five "codons" of the proteomic code are presented with their respective unique sequences, structures, and functions. More such codons are to be discovered, and the general procedure for their identification is described.  相似文献   

6.
Recent works has suggested that proteins in early evolution have gone through a stage of closed loop elements with a typical contour size of 25-35 residues. These closed loops are still the elementary protein units to these days, and can be used to spell out protein sequence/structure relationship through a relatively small number of protein prototypes. In this study we aimed to identify the sequences that are used to lock the loop ends to one another, and to show how an extensive dictionary of such locking pairs can be created using positional correlation data from a large proteome database, and structural data from PDB databases. Such a dictionary can be used in reconstructing the evolutionary pathway the modern proteins have gone through, and in identifying closed loop elements in modern proteins with yet unknown 3D structure.  相似文献   

7.
Abstract

Recent works has suggested that proteins in early evolution have gone through a stage of closed loop elements with a typical contour size of 25–35 residues. These closed loops are still the elementary protein units to these days, and can be used to spell out protein sequence/structure relationship through a relatively small number of protein prototypes. In this study we aimed to identify the sequences that are used to lock the loop ends to one another, and to show how an extensive dictionary of such locking pairs can be created using positional correlation data from a large proteome database, and structural data from PDB databases. Such a dictionary can be used in reconstructing the evolutionary pathway the modern proteins have gone through, and in identifying closed loop elements in modern proteins with yet unknown 3D structure.  相似文献   

8.
The closed loops within the proteins of the TIM-barrel fold family are analyzed and compared sequence- and structure-wise. The size distribution of the closed loops of the TIM-barrels confirms universal preference to the standard size of 25-30 residues. 3D structural RMSD comparisons of the closed loops and presentation of their sequences in binary form suggest that the TIM-barrel proteins are built from descendants of several types of basic closed loop prototypes. Comparison of these prototypes points to a likely common ancestor--the alpha helix containing closed loops of 28 amino acids. The presumed ancestor is characterized by specific binary consensus sequence.  相似文献   

9.
Abstract

The closed loops within the proteins of the TIM-barrel fold family are analyzed and compared sequence- and structure-wise. The size distribution of the closed loops of the TIM-barrels confirms universal preference to the standard size of 25–30 residues. 3D structural RMSD comparisons of the closed loops and presentation of their sequences in binary form suggest that the TIM-barrel proteins are built from descendants of several types of basic closed loop prototypes. Comparison of these prototypes points to a likely common ancestor—the alpha helix containing closed loops of 28 amino acids. The presumed ancestor is characterized by specific binary consensus sequence.  相似文献   

10.
Proteomic Code     
On the basis of recent basic developments in protein structure, a proteomic code is suggested, which would potentially allow the sequence, structure, and function of proteins to be described by a spectrum of elementary loop-n-lock units. All major characteristics of the nearly standard units are described, and the first five codons of the proteomic code are presented with their respective unique sequences, structures, and functions. More such codons are to be discovered, and the general procedure for their identification is described.  相似文献   

11.
The complete amino acid sequence of the human monoclonal lambda VI light chain Bence Jones protein THO was determined. We have found it to have remarkable similarities to the previously sequenced lambda VI Bence Jones protein SUT. Immunochemical analyses demonstrated that both lambda VI chains belong to a V lambda VI sub-subgroup. The 98-residue V gene-encoded segments of proteins THO and SUT are closely homologous and are distinguished from other lambda VI chains by a one-residue deletion at the V-J recombination site. Proteins THO and SUT have identical 13-residue J segments and therefore are encoded by the same J lambda gene. Further, both proteins have identical 105-residue C regions that by sequence represent products of the C lambda 3 (Kern-, Oz+) gene. The primary structure and serologic properties of proteins THO and SUT imply at the protein level of association between certain types of V lambda, J lambda, and C lambda segments.  相似文献   

12.
A census of protein repeats.   总被引:20,自引:0,他引:20  
In this study, we analyzed all known protein sequences for repeating amino acid segments. Although duplicated sequence segments occur in 14 % of all proteins, eukaryotic proteins are three times more likely to have internal repeats than prokaryotic proteins. After clustering the repetitive sequence segments into families, we find repeats from eukaryotic proteins have little similarity with prokaryotic repeats, suggesting most repeats arose after the prokaryotic and eukaryotic lineages diverged. Consequently, protein classes with the highest incidence of repetitive sequences perform functions unique to eukaryotes. The frequency distribution of the repeating units shows only weak length dependence, implicating recombination rather than duplex melting or DNA hairpin formation as the limiting mechanism underlying repeat formation. The mechanism favors additional repeats once an initial duplication has been incorporated. Finally, we show that repetitive sequences are favored that contain small and relatively water-soluble residues. We propose that error-prone repeat expansion allows repetitive proteins to evolve more quickly than non-repeat-containing proteins.  相似文献   

13.
The complete amino acid sequence of a peptic fragment (Pep M5) of the group A streptococcal type 5 M protein, the antiphagocytic cell surface molecule of the bacteria, is described. This fragment, comprising nearly half of the native M molecule, is biologically active in that it has the ability to interact with opsonic antibodies as well as to evoke such an antibody response in rabbits. The sequence of Pep M5 was determined by automated Edman degradations of the uncleaved molecule and its enzymatically derived peptides. The primary peptides for Edman degradation were the arginine peptides obtained by tryptic digestion. The tryptic cleavage of Pep M5 was limited to the arginyl peptide bonds by derivatizing the epsilon-amino groups of lysine residues by reductive dihydroxypropylation. The overlapping peptides were generated by digestion of the unmodified Pep M5 with chymotrypsin, V8 protease, and subtilisin. The sequence thus established for the Pep M5 molecule consists of a total of 197 residues (Mr = 22,705). The Pep M5 protein contains some identical, or nearly so, repeating sequences: four 7-residue segments and two 10-residue segments. However, extensive sequence repeats of the kind previously reported within the partial sequence of another M protein serotype, namely Pep M24, were absent. The Pep M5 sequence is distinct from, but exhibits some homology with, the partial sequences of two other M protein serotypes, namely, Pep M6 and Pep M24. Furthermore, the 7-residue periodicity of the nonpolar and charged residues, an alpha-helical coiled-coil structural characteristic that was previously observed within the partial sequences of M proteins, was found to extend over a significant part of the Pep M5 sequence. The implication of these results to the function and immunological diversity in M proteins is discussed.  相似文献   

14.
Amino acid sequence data for intermediate filament proteins have been analysed with a view to identifying structurally invariant segments and determining their likely secondary structure. The sequences in these segments have also been analysed for periodic distributions of particular types of residue. The results support the classification of intermediate filament proteins into three main groups and also reinforce the concept of a molecular structure with a central domain of coiled-coil segments, together with essentially non-helical N-terminal and C-terminal domains of variable size and composition. Regions exhibiting the greatest homology between the three types of IF chain are identified and significant variation in charged residue disposition along the length of individual chains is noted. The conservation in all IF protein chains of specific sites of coiled-coil rope interruption are discussed in terms of the probable molecular structure. Stabilizing ionic interactions between coiled-coil chain segments have been investigated quantitatively as a function of the relative chain stagger. In all cases and calculations favour ropes in which the constituent chains are in-register and parallel rather than antiparallel.  相似文献   

15.
Most globular proteins are divisible by domains, distinct substructures of the globule. The notion of hierarchy of the domains was introduced earlier via van der Waals energy profiles that allow one to subdivide the proteins into domains (subdomains). The question remains open as to what is the possible structural connection of the energy profiles. The recent discovery of the loop-n-lock elements in the globular proteins suggests such a structural connection. A direct comparison of the segmentation by van der Waals energy criteria with the maps of the locked loops of nearly standard size reveals a striking correlation: domains in general appear to consist of one to several such loops. In addition, it was demonstrated that a variety of subdivisions of the same protein into domains is just a regrouping of the loop-n-lock elements.  相似文献   

16.
From protein sequence space to elementary protein modules   总被引:2,自引:0,他引:2  
Frenkel ZM  Trifonov EN 《Gene》2008,408(1-2):64-71
The formatted protein sequence space is built from identical size fragments of prokaryotic proteins (112 complete proteomes). Connecting sequence-wise similar fragments (points in the space) results in the formation of numerous networks, that combine sometimes different types of proteins sharing, though, fragments with similar or distantly related sequences. The networks are mapped on individual protein sequences revealing distinct regions (modules) associated with prominent networks with well-defined functional identities. Presence of multiple sites of sequence conservation (modules) in a given protein sequence suggests that the annotated protein function may be decomposed in "elementary" subfunctions of the respective modules. The modules correspond to previously discovered conserved closed loop structures and their sequence prototypes.  相似文献   

17.
J P Kinet  H Metzger  J Hakimi  J Kochan 《Biochemistry》1987,26(15):4605-4610
Rat mast cells and a neoplastic analogue such as rat basophilic leukemia (RBL) cells have receptors that have exceptionally high affinity for immunoglobulin E (IgE). When aggregated, these receptors induce cellular degranulation. The alpha chain of the receptor contains the binding site for IgE; the function(s) of the noncovalently associated beta and gamma chains is (are) still undefined. Using a cDNA library constructed from the mRNA of RBL cells, we have isolated a cDNA clone whose sequence predicts a putative 23-residue signal peptide, followed by a sequence that accurately predicts the amino acid composition, the peptide molecular weight, and six peptide sequences (encompassing 59 residues or 26% of the total number) determined for the alpha chain by direct analysis. These findings provide strong evidence that the cDNA codes for the alpha chain, even though expression has not been unambiguously achieved. The sequence suggests that the alpha chain contains a 180-residue extracellular portion with two homologous domains of approximately 35 residues, a 20-residue transmembrane segment containing an aspartic acid, and a 27-residue cytoplasmic portion containing 9 basic amino acids. The sequence shows no homology with the low-affinity receptor for IgE from lymphocytes but over 30% homology with an Fc gamma receptor.  相似文献   

18.
19.
Conserved protein sequence segments are commonly believed to correspond to functional sites in the protein sequence. A novel approach is proposed to profile the changing degree of conservation along the protein sequence, by evaluating the occurrence frequencies of all short oligopeptides of the given sequence in a large proteome database. Thus, a protein sequence conservation profile can be plotted for every protein. The profile indicates where along the sequences the potential functional (conserved) sites are located. The corresponding oligopeptides belonging to the sites are very frequent across many prokaryotic species. Analysis of a representative set of such profiles reveals a common feature of all examined proteins: they consist of sequence modules represented by the peaks of conservation. Typical size of the modules (peak-to-peak distance) is 25-30 amino acid residues.  相似文献   

20.
Insertions, duplications, and deletions of sequence segments are thought to be major evolutionary mechanisms that increase the structural and functional diversity of proteins. Alternative splicing, for example, is an intracellular editing mechanism that is thought to generate isoforms for 30%-50% of all human genes. Whereas the inserted sequences usually display only minor structural rearrangements at the insertion site, recent observations indicate that they may also cause more dramatic structural displacements of adjacent structures. In the present study we test how artificially inserted sequences change the structure of the beta-sheet region in T4 lysozyme. Copies of two different beta-strands were inserted into two different loops of the beta-sheet, and the structures were determined. Not surprisingly, one insert "loops out" at its insertion site and forms a new small beta-hairpin structure. Unexpectedly, however, the second insertion leads to displacement of adjacent strands and a sequential reorganization of the beta-sheet topology. Even though the insertions were performed at two different sites, looping out occurred at the C-terminal end of the same beta-strand. Reasons as to why a non-native sequence would be recruited to replace that which occurs in the native protein are discussed. Our results illustrate how sequence insertions can facilitate protein evolution through both local and nonlocal changes in structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号