首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline inorganic pyrophosphatase isolated from baker's yeast   总被引:21,自引:0,他引:21  
Crystalline inorganic pyrophosphatase has been isolated from baker's yeast. The crystalline enzyme is a protein of the albumin type with an isoelectric point near pH 4.8. Its molecular weight is of the order of 100,000. It contains about 5 per cent tyrosine and 3.5 per cent tryptophane. It is most stable at pH 6.8. The new crystalline protein acts as a specific catalyst for the hydrolysis of inorganic pyrophosphate into orthophosphate ions. It does not catalyze the hydrolysis of the pyrophosphate radical of such organic esters as adenosine di- and triphosphate, or thiamine pyrophosphate. Crystalline pyrophosphatase requires the presence of Mg, Co, or Mn ions as activators. These ions are antagonized by calcium ions. Mg is also antagonized by Co or Mn ions. The rate of the enzymatic hydrolysis of inorganic pyrophosphate is proportional to the concentration of enzyme and is a function of pH, temperature, concentration of substrate, and concentration of activating ion. The approximate conditions for optimum rate are: 40 degrees C. and pH 7.0 at a concentration of 3 to 4 x 10(-3)M Na(4)P(2)O(7) and an equivalent concentration of magnesium salt. The enzymatic hydrolysis of Na(4)P(2)O(7) or K(4)P(2)O(7) proceeds to completion and is irreversible under the conditions at which hydrolysis is occurring. Details are given of the method of isolation of the crystalline enzyme.  相似文献   

2.
DNA is known to be aggregated by metal ions including Mn(2+) ions, but analysis of the aggregation process from a chemical viewpoint, which means identification of the product yielded during the process, has not been performed yet. On examination of the kinds of degraded materials that were in the supernatant obtained on centrifugation of a DNA mixture aggregated under conditions of 10 mM Mn(2+) ions ([Mn]/[P] = 46.3) at 70 degrees C for 1 h, the degradation products were found to be dAMP, dCMP, dGMP, and TMP. These dNMPs were purified by HPLC on TSKgel ODS-80Ts and identified by LC-TOF/MS. The degradation activity was lost on pretreatment of the DNA with a phenol-chloroform mixture, and the activity was recovered by pretreatment with a mixture of DMSO and a buffer containing surfactants. Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), and Cd(2+), as transition element metal ions, were effective as to the degradation into dNMP. Mg(2+), Ca(2+), Sr(2+), and Ba(2+), as alkali earth element metal ions, were not effective as to the degradation. Monovalent anions such as Cl(-), CH(3)OO(-), and NO(3)(-) were found to increase the degradation rate. Sixty mug of the 120 mug of the starting DNA in 450 mul was degraded into dNMP on reaction for 1 h in the presence of 100 mM NaCl and 10 mM Mn(2+) ions. In this process, aggregation did not occur, and thus was not considered to be necessary for degradation. The degradation was found not to occur at pH 7.0, and to be very sensitive to pH. The OH(-) ion should have a critical role in cleavage of the phosphodiester linkages in this case. The dNMP obtained in the degradation process was found to be only 5'-NMP, based on the H(1)NMR spectra. This prosess should prove to be a new process for the production of 5'-dNMP in addtion to the exonuclease.  相似文献   

3.
An extracellular nuclease from Rhizopus stolonifer (designated as nuclease Rsn) was purified to homogeneity by chromatography on DEAE-cellulose followed by Blue Sepharose. The M(r) of the purified enzyme determined by native PAGE was 67? omitted?000 and it is a tetramer and each protomer consists of two unidentical subunits of M(r) 21? omitted?000 and 13? omitted?000. It is an acidic protein with a pI of 4.2 and is not a glycoprotein. The purified enzyme showed an obligate requirement of divalent cations like Mg(2+), Mn(2+) and Co(2+) for its activity but is not a metalloprotein. The optimum pH of the enzyme was 7.0 and was not influenced by the type of metal ion used. Although, the optimum temperature of the enzyme for single stranded (ss) DNA hydrolysis in presence of all three metal ions and for double stranded (ds) DNA hydrolysis in presence of Mg(2+) was 40 degrees C, it showed higher optimum temperature (45 degrees C) for dsDNA hydrolysis in presence of Mn(2+) and Co(2+). Nuclease Rsn was inhibited by divalent cations like Zn(2+), Cu(2+) and Hg(2+), inorganic phosphate and pyrophosphate, low concentrations of SDS, guanidine hydrochloride and urea, organic solvents like dimethyl sulphoxide, dimethyl formamide and formamide but not by 3'- or 5'-mononucleotides. The studies on mode and mechanism of action showed that nuclease Rsn is an endonuclease and cleaves dsDNA through a single hit mechanism. The end products of both ssDNA and dsDNA hydrolysis were predominantly oligonucleotides ending in 3'-hydroxyl and 5'-phosphoryl termini. Moreover, the type of metal ion used did not influence the mode and mechanism of action of the enzyme.  相似文献   

4.
A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co(+) or Mg(2+) and to a lesser extent by 1.0 mM Ba(2+), Zn(2+), and Mn(2+). The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu(2+), Ca(2+), Cd(2+), Hg(2+), and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 +/- 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent K(m) for KDO-8-phosphate was determined to be 5.8 +/- 0.9 x 10(-5) M in the presence of 1.0 mM Co(2+), 9.1 +/- 1 x 10(-5) M in the presence of 1.0 mM Mg(2+), and 1.0 +/- 0.2 x 10(-4) M in the absence of added Co(2+) or Mg(2+).  相似文献   

5.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

6.
1. The differential effects of adding Zn(2+) and Mg(2+) on the orthophosphatase and inorganic pyrophosphatase activities of human intestinal alkaline phosphatase were studied. 2. In the presence of excess of Zn(2+), inorganic pyrophosphatase activity is inhibited. At higher concentrations of pyrophosphate, hydrolysis of this substrate takes place, but is inhibited competitively by the Zn(2+)-pyrophosphate complex. This complex also acts as a competitive inhibitor of orthophosphate hydrolysis. 3. Excess of Mg(2+) also inhibits pyrophosphatase action by removal of substrate; at low concentrations, this ion activates pyrophosphatase, as is the case with orthophosphatase. 4. It is concluded that, when interactions between metal ions and pyrophosphate are taken into account, the effects of these ions are consistent with the view that alkaline phosphatases possess both orthophosphatase and inorganic pyrophosphatase activities.  相似文献   

7.
The purified glucoamylase of the thermophilic mold Thermomucor indicae-seudaticaehad a molecular mass of 42 kDa with a pI of 8.2. It is a glycoprotein with 9-10.5% carbohydrate content, which acted optimally at 60 degrees C and pH 7.0, with a t(1/2) of 12 h at 60 degrees C and 7 h at 80 degrees C. Its experimental activation energy was 43 KJ mol(-1) with temperature quotient (Q(10)) of 1.35, while the values predicted by response surface methodology (RSM) were 43 KJ mol(-1) and 1.28, respectively. The enzyme hydrolyzed soluble starch at 50 degrees C (K(m) 0.50 mg mL(-1) and V(max) 109 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.40 and V(max) 143 micromol mg(-1) protein min(-1)). The experimental K(m) and V(max) values are in agreement with the predicted values at 50 degrees C (K(m) 0.45 mg mL(-1) and V(max) 111.11 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.36 mg mL(-1)and V(max) 142.85 micromol mg(-1) protein min(-1)). An Arrhenius plot indicated thermal activation up to 60 degrees C, and thereafter, inactivation. The enzyme was strongly stimulated by Co(2+), Fe(2+), Ag(2+), and Ca(2+), slightly stimulated by Cu(2+) and Mg(2+), and inhibited by Hg(2+), Zn(2+), Ni(2+), and Mn(2+). Among additives, dextran and trehalose slightly enhanced the activity. Glucoamylase activity was inhibited by EDTA, beta-mercaptoethanol, dithiothreitol, and n-bromosuccinimide, and n-ethylmaleimide inhibited its activity completely. This suggested the involvement of tryptophan and cysteine in catalytic activity and the critical role of disulfide linkages in maintaining the conformation of the enzyme. The enzyme hydrolyzed around 82% of soluble starch and 65% of raw starch (K(m) 2.4 mg mL(-1), V(max) 50 micromol mg(-1) protein min(-1)), and it was remarkably insensitive to glucose, suggesting its applicability in starch saccharification.  相似文献   

8.
A lipase was partially purified from the almond (Amygdalus communis L.) seed by ammonium sulfate fractionation and dialysis. Kinetics of the enzyme activity versus substrate concentration showed typical lipase behavior, with K(m) and V(max) values of 25 mM and 113.63 micromol min(-1) mg(-1) for tributyrin as substrate. All triglycerides were efficiently hydrolyzed by the enzyme. The partially purified almond seed lipase (ASL) was stable in the pH range of 6-9.5, with an optimum pH of 8.5. The enzyme was stable between 20 and 90 degrees C, beyond which it lost activity progressively, and exhibited an optimum temperature for the hydrolysis of soy bean oil at 65 degrees C. Based on the temperature activity data, the activation energy for the hydrolysis of soy bean oil was calculated as -5473.6 cal/mol. Soy bean oil served as good substrate for the enzyme and hydrolytic activity was enhanced by Ca(2+), Fe(2+), Mn(2+), Co(2+), and Ba(2+), but strongly inhibited by Mg(2+), Cu(2+), and Ni(2+). The detergents, sodiumdeoxicholate and Triton X-100 strongly stimulated enzyme activity while CTAB, DTAB, and SDS were inhibitors. Triton X-405 had no effect on lipase activity. The partially purified enzyme retained its activity for more than 6 months at -20 degrees C, beyond which it lost activity progressively.  相似文献   

9.
The phosphotriesterase (PTE) from Pseudomonas diminuta, a metalloenzyme that catalyses the hydrolysis of organophosphorus pesticides and nerve agents, has been described as a remarkably heat-stable protein [Grimsley et al., Biochemistry 36 (1997), 14366-14374]. Because substitution of the naturally occurring zinc ions by cobalt ions was found to enhance the enzyme catalytic activity, we investigated the thermal stability of the Co(2+)/Co(2+)-PTE. This study, carried out using capillary electrophoresis under optimised conditions in the pH range 9-10 compatible with optimal enzyme activity, provided evidence for irreversible denaturation according to the Lumry-Eyring model. A temperature-induced conformational transition (T(m) approximately equal to 58 degrees C) and an early growing of aggregates were observed. Comparison of UV spectra with heat-induced inactivation data clearly demonstrated that the PTE state populated above T(m) was neither native nor active. Differential scanning calorimetry showed only an exothermic trace due to aggregation of the denatured protein at T=76 degrees C. Accordingly, the temperature-induced denaturation process of the PTE could be described by a consecutive reaction model, including formation of an intermediate with enhanced activity at T approximately equal to 45 degrees C and an inactive unfolded state populated at T approximately equal to 58 degrees C, which leads to denatured aggregates. Thus, the wild type Co(2+)/Co(2+)-PTE displays a middle-range thermostability. Hence, for decontamination purposes under extreme Earth temperatures, wild type and engineered mutants of PTE substituted with other metal cations should be evaluated.  相似文献   

10.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

11.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

12.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

13.
A cytoplasmic pyrophosphatase [E.C. 3.6.1.1.] was partially purified from Helicobacter pylori. The molecular mass was estimated to be 103 kDa by gel filtration. Results of SDS-PAGE suggested that the enzyme consists of six identical subunits of 19.1 kDa each. The enzyme specifically catalyzed the hydrolysis of pyrophosphate and was very sensitive to NaF, but not to sodium molybdate. The optimal pH for activity was 8.5. Mg2+ was required for maximal activity; Mn2+, Co2+, and Zn2+ poorly supported hydrolytic activity. The pyrophosphatase had an apparent K(m) for Mg-PP(i)2 hydrolysis of 90 microM, and a Vmax estimated at 24.0 micromol P(i) min(-1) mg(-1).  相似文献   

14.
15.
Streptococcus gordonii DL1(Challis) soluble inorganic pyrophosphatase was shown to be a homo dimer with a subunit molecular mass of 33407. In solution, in the presence of Mn(2+), the protein is ellipsoidal with an axial ratio of 3.37 and molecular mass of 67000. In the absence of the divalent cation, the molecular mass is unchanged but the axial ratio increases to 3.94. The enzyme, in the presence of 5 mM Mg(2+), at 25 degrees Celsius and pH 9.0, has K(m) and k(cat) values of 62 microM and 6290 s(-1), respectively. The free N- and C-terminal domains of Streptococcus gordonii PPase did not interact productively when mixed together. Replacing the interdomain region with that from Bacillus subtilis decreased the catalytic efficiency of the enzyme whereas inserting the same region from the Archaeglobus fulgidus thermophilic enzyme yielded an inactive protein. Substitution, deletion and insertion of amino acid residues in the interdomain region were found to affect the monomer dimer equilibrium in the absence of Mn(2+) ions. In the presence of these ions however the variant proteins were dimers. Proteins with altered interdomain regions also displayed a 2- to 625-fold decrease in catalytic efficiency. These data together with that of computer analysis show that the interdomain region has characteristics of a mechanical hinge. Modelling mutant proteins onto the wild type shows that the active site regions are not significantly perturbed. These results show that, although distant from the active site, the interdomain region plays a role in enzyme activity and both its length and composition are important. This supports the hypothesis that catalytic activity requires the N- and C terminal domains of the enzyme to open and close using the interdomain region as a hinge.  相似文献   

16.
Two structures of Escherichia coli soluble inorganic pyrophosphatase (EPPase) complexed with calcium pyrophosphate (CaPP(i)-EPPase) and with Ca(2+) (Ca(2+)-EPPase) have been solved at 1.2 and 1.1 A resolution, respectively. In the presence of Mg(2+), this enzyme cleaves pyrophosphate (PP(i)) into two molecules of orthophosphate (P(i)). This work has enabled us to locate PP(i) in the active site of the inorganic pyrophosphatases family in the presence of Ca(2+), which is an inhibitor of EPPase.Upon PP(i) binding, two Ca(2+) at M1 and M2 subsites move closer together and one of the liganded water molecules becomes bridging. The mutual location of PP(i) and the bridging water molecule in the presence of inhibitor cation is catalytically incompetent. To make a favourable PP(i) attack by this water molecule, modelling of a possible hydrolysable conformation of PP(i) in the CaPP(i)-EPPase active site has been performed. The reasons for Ca(2+) being the strong PPase inhibitor and the role in catalysis of each of four metal ions are the mechanistic aspects discussed on the basis of the structures described.  相似文献   

17.
Yeast inorganic pyrophosphatase was found to bind two Mn2+ per subunit in the absence of phosphate and three Mn2+ per subunit in the presence of phosphate. Kinetic studies of the pyrophosphatase-catalyzed hydrolysis of Cr(NH3)4PP and Cr(H2O)4PP were carried out with Mn2+ and with Mg2+ as activators. The results from these studies suggest that three divalent cations per pyrophosphatase active site are required for catalysis. NMR and EPR studies were conducted to evaluate the relative location of the metal ion binding sites on the enzyme. The two Mn2+ ions bound to the free enzyme are in close enough proximity to magnetically interact. Analysis of the NMR and EPR data in terms of a dipolar relaxation mechanism between Mn2+ ions provides an estimate of the distance between them of 10-14 A. When the diamagnetic substrate analog [Co(NH3)4PNP]- or intermediate analog [Co(NH3)4 (P)2]- are bound to pyrophosphatase, two Mn2+ ions still bind to the enzyme and their magnetic interaction increases. In the presence of these Co3+ complexes, the Mn2+--Mn2+ separation decreases to 7-9 A. Several NMR and EPR experiments were conducted at low Mn2+ to pyrophosphatase ratios (approximately 0.3), where only one Mn2+ ion binds per subunit, in the presence of Cr3+ or Co3+ complexes of PNP or PP. Analysis of the Mn2+--Cr3+ dipolar relaxation evident in proton NMR and EPR data provided for the calculation of Mn2+--Cr3+ distances. When the substrate analog CrPNP was present, the Mn2+--Cr3+ distance was congruent to 7 A whereas, when Cr(P)2 was bound to pyrophosphatase, the Mn2+--Cr3+ distance was congruent to 5 A. These results strongly support a model for the catalytic site of pyrophosphatase that involves three metal ion cofactors.  相似文献   

18.
Dipeptidyl peptidase III (DPP III) (EC 3.4.14.4), which has a HELLGH-E (residues 450-455, 508) motif as the zinc binding site, is classified as a zinc metallopeptidase. The zinc dissociation constants of the wild type, Leu(453)-deleted, and E508D mutant of DPP III at pH 7.4 were 4.5 (+/-0.7) x 10(-13), 5.8 (+/-0.7) x 10(-12), and 3.2 (+/-0.9) x 10(-10) M, respectively. The recoveries of the enzyme activities by the addition of various metal ions to apo-DPP III were also measured, and Co(2+), Ni(2+), and Cu(2+) ions completely recovered the enzyme activities as did Zn(2+). The dissociation constants of Co(2+), Ni(2+), and Cu(2+) ions for apo-DPP III at pH 7.4 were 8.2 (+/-0.9) x 10(-13), 2.7 (+/-0.3) x 10(-12), and 1.1 (+/-0.1) x 10(-14) M, respectively. The shape of the absorption spectrum of Co(2+)-DPP III was very similar to that of Co(2+)-carboxypeptidase A or Co(2+)-thermolysin, in which the Co(2+) is bound to two histidyl nitrogens, a water molecule, and a glutamate residue. The absorption spectrum of Cu(2+)-DPP III is also very similar to that of Cu(2+)-thermolysin. The EPR spectrum and the EPR parameters of Cu(2+)-DPP III were very similar to those of Cu(2+)-thermolysin but slightly different from those of Cu(2+)-carboxypeptidase A. The five lines of the superfine structure in the perpendicular region of the EPR spectrum in Cu(2+)-DPP III suggest that nitrogen atoms should coordinate to the cupric ion in Cu(2+)-DPP III. All of these data suggest that the donor set and the coordination geometry of the metal ions in DPP III, which has the HExxxH motif as the metal binding site, are very similar to those of the metal ions in thermolysin, which has the HExxH motif.  相似文献   

19.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

20.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号