首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Rhoptries are cellular organelles localized at the apical pole of apicomplexan parasites. Their content is rich in lipids and proteins that are released during target cell invasion. Plasmodium falciparum rhoptry-associated protein 1 (RAP1) has been the most widely studied among this parasite species' rhoptry proteins and is considered to be a good anti-malarial vaccine candidate since it displays little polymorphism and induces antibodies in infected humans. Monoclonal antibodies directed against RAP1 are also able to inhibit target cell invasion in vitro and protection against P. falciparum experimental challenge is induced when non-human primates are immunized with this protein expressed in its recombinant form. This study describes identifying and characterizing RAP1 in Plasmodium vivax, the most widespread parasite species causing malaria in humans, producing more than 80 million infections yearly, mainly in Asia and Latin America. This new protein is encoded by a two-exon gene, is proteolytically processed in a similar manner to its falciparum homologue and, as observed by microscopy, the immunofluorescence pattern displayed is suggestive of its rhoptry localization. Further studies evaluating P. vivax RAP1 protective efficacy in non-human primates should be carried out taking into account the relevance that its P. falciparum homologue has as an anti-malarial vaccine candidate.  相似文献   

2.
Plasmodium vivax remains the most widespread Plasmodium parasite species around the world, producing about 75 million malaria cases, mainly in South America and Asia. A vaccine against this disease is of urgent need, making the identification of new antigens involved in target cell invasion, and thus potential vaccine candidates, a priority. A protein belonging to the P. vivax merozoite surface protein 7 (PvMSP7) family was identified in this study. This protein (named PvMSP7(1)) has 311 amino acids displaying an N-terminal region sharing high identity with P. falciparum MSP7, as well as a similar proteolytical cleavage pattern. This protein's expression in P. vivax asexual blood stages was revealed by immuno-histochemical and molecular techniques.  相似文献   

3.
4.
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.  相似文献   

5.
Although Plasmodium falciparum is the leading cause of morbidity and mortality due to malaria worldwide, nearly 2.5 billion people, mostly outside Africa, are also at risk from malaria caused by Plasmodium vivax infection. Currently, almost all efforts to develop a malaria vaccine have focused on P. falciparum. For example, there are 23 P. falciparum vaccine candidates undergoing advanced clinical studies and only two P. vivax vaccine candidates being tested in preliminary (Phase I) clinical trials, with few others being assessed in preclinical studies. More investment and a greater effort toward the development of P. vivax vaccine components for a multi-species vaccine are required. This is mainly because of the wide geographical coexistence of both parasite species but also because of increasing drug resistance, recent observations of severe and lethal P. vivax cases and relapsing parasite behaviour. Availability of the P. vivax genome has contributed to antigen discovery but new means to test vaccines in future trials remain to be designed.  相似文献   

6.
Four Plasmodium species cause malaria in humans, Plasmodium falciparum being the most widely studied to date. All Plasmodium species have paired club-shaped organelles towards their apical extreme named rhoptries that contain many lipids and proteins which are released during target cell invasion. P. falciparum RhopH3 is a rhoptry protein triggering important immune responses in patients from endemic regions. It has also been shown that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes. Recent immunisation studies in mice with the Plasmodium yoelii and Plasmodium berghei RhopH3 P. falciparum homologue proteins found that they are able to induce protection in murine models. This study described identifying and characterising RhopH3 protein in Plasmodium vivax; it is encoded by a seven exon gene and expressed during the parasite's asexual stage. PvRhopH3 has similar processing to its homologue in P. falciparum and presents a cellular immunolocalisation pattern characteristic of rhoptry proteins.  相似文献   

7.
Plasmodium falciparum causes the most lethal form of malaria in humans and is responsible for over two million deaths per year. The development of a vaccine against this parasite is an urgent priority and potential protein targets include those on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to transfect P. falciparum has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. In this review, we describe the use of this technology to examine the role of merozoite antigens in erythrocyte invasion and to address their potential as vaccine candidates.  相似文献   

8.
Plasmodium vivax malaria is one of the most prevalent parasitic diseases in Asia and Latin-America. The difficulty of maintaining this parasite culture in vitro has hampered identifying and characterising proteins implied in merozoite invasion of red blood cells. We have been able to identify an open reading frame in P. vivax encoding the Plasmodium falciparum merozoite surface protein 10 homologous protein using the partial sequences from this parasite's genome reported during 2004. This new protein contains 479 amino-acids, two epidermal growth factor-like domains, hydrophobic regions at the N- and C-termini, being compatible with a signal peptide and a glycosylphosphatidylinositol anchor site, respectively. The protein is expressed during the parasite's asexual stage and is recognised by polyclonal sera in parasite lysate using Western blot. P. vivax-infected patients' sera highly recognised recombinant protein by ELISA.  相似文献   

9.
Plasmodium vivax is a highly prevalent malaria pathogen of man; the following report is the first to describe the cloning and expression of a major asexual erythrocytic stage antigen of this species. The screening of a genomic DNA expression library with a monoclonal antibody directed against a 200-kDa surface component (Pv200) of the more mature schizonts of P. vivax led to the selection of a recombinant bacterial clone which produced a fusion protein. Mouse and rabbit immune sera raised against the purified fusion protein recognized the 200-kDa parasite antigen on Western blots and reacted with the surface of segmenters by immunofluorescence. Sequencing of the 1.9-kb P. vivax DNA insert coding for this fusion protein revealed a 45-47% homology at the nucleotide level with the P. falciparum gene of a parasite surface antigen, Pf195, which has been shown to be a promising candidate for a malaria vaccine in primates and in man.  相似文献   

10.
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.  相似文献   

11.
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.  相似文献   

12.
Baum J  Thomas AW  Conway DJ 《Genetics》2003,163(4):1327-1336
Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses.  相似文献   

13.
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.  相似文献   

14.
Plasmodium vivax is an important human pathogen causing malaria in more temperate climates of the world. Similar to Plasmodium falciparum, the causative agent for malaria tropica, drug resistance is beginning to emerge for this parasite species and this hampers adequate treatment of infection. We have used a short-term ex vivo drug assay to monitor activity of OZ277 (RBx-11160), a fully synthetic anti-malarial peroxide, and the diamidine DB75 against P. vivax. For both compounds as well as the anti-malarial reference compounds artesunate, artemether, and chloroquine, the in vitro IC(50) values were determined in one-cycle hypoxanthine incorporation assays. Results from such assays were found to be very similar compared to IC(50) values obtained from one-cycle P. falciparum hypoxanthine assays. We demonstrate the anti-parasite activity of OZ277 and the reference compounds to be faster than that of DB75. These data warrant clinical testing of OZ277 against P. vivax malaria and support recent data on clinical activity against P. vivax for DB75.  相似文献   

15.
Apical membrane antigen 1 (AMA1) has an important, but as yet uncharacterised, role in host cell invasion by the malaria parasite, Plasmodium. The protein, which is quite conserved between Plasmodium species, comprises an ectoplasmic region, a single transmembrane segment and a small cytoplasmic domain. The ectoplasmic region, which can induce protective immunity in animal models of human malaria, is a leading vaccine candidate that has entered clinical trials. The monoclonal antibody F8.12.19, raised against the recombinant ectoplasmic region of AMA1 from Plasmodium vivax, cross-reacts with homologues from Plasmodium knowlesi, Plasmodium cynomolgi, Plasmodium berghei and Plasmodium falciparum, as shown by immunofluorescence assays on mature schizonts. The binding of F8.12.19 to recombinant AMA1 from both P. vivax and P. falciparum was measured by surface plasmon resonance, revealing an apparent affinity constant that is about 100-fold weaker for the cross-reacting antigen when compared to the cognate antigen. Crystal structure analysis of Fab F8.12.19 complexed to AMA1 from P. vivax and P. falciparum shows that the monoclonal antibody recognises a discontinuous epitope located on domain III of the ectoplasmic region, the major component being a loop containing a cystine knot. The structures provide a basis for understanding the cross-reactivity. Antibody contacts are made mainly to main-chain and invariant side-chain atoms of AMA1; contact antigen residues that differ in sequence are located at the periphery of the antigen-binding site and can be accommodated at the interface between the two components of the complex. The implications for AMA1 vaccine development are discussed.  相似文献   

16.
Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.  相似文献   

17.
Among the surface-exposed antigens of the malaria parasite, those with known essential functions that can be disrupted by antibodies represent the most promising candidates for development as malaria vaccines. Two recombinant protein subunits of the Plasmodium vivax merozoite surface protein 1 have been shown to bind to reticulocytes in enzyme-linked immunosorbent assays. This article discusses the importance of such pre-clinical analyses in the validation of candidate vaccine molecules for P. vivax, given the constraints imposed by the use of primate models and the cost of producing suitable material for human trials.  相似文献   

18.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

19.
Of the four Plasmodium species that routinely cause malaria in humans, Plasmodium falciparum is responsible for the majority of malaria mortality and consequently gets most of the headlines. Outside Africa, however, more malaria cases are caused by its distant cousin Plasmodium vivax, resulting in a daunting morbidity and economic burden for countries across Asia and the Americas. Plasmodium life cycles are complex, but the symptoms and pathology of malaria occur during the blood phase, when merozoites recognize and invade erythrocytes, initiating a developmental programme that culminates in lysis of the erythrocyte and release of multiple daughter merozoites. P. vivax merozoites are dependent on a single host cell receptor for erythrocyte invasion, the Duffy antigen receptor for chemokines, and humans that do not express this receptor on the surface of their erythrocytes are immune to P. vivax infection. This essential receptor-ligand interaction is addressed from both the host and parasite side in two papers in this issue of Molecular Microbiology, with important implications for plans to develop a P. vivax vaccine.  相似文献   

20.
Malaria vaccines containing the Plasmodium falciparum Circumsporozoite protein repeat domain are undergoing human trials. There is no simple method to evaluate the effect of vaccine-induced responses on P. falciparum sporozoite infectivity. Unlike the rodent malaria Plasmodium berghei, P. falciparum sporozoites do not infect common laboratory animals and only develop in vitro in human hepatocyte cultures. We generated a recombinant P. berghei parasite bearing P. falciparum Circumsporozoite protein repeats. These hybrid sporozoites are fully infective in vivo and in vitro. Monoclonal and polyclonal Abs to P. falciparum repeats neutralize hybrid parasite infectivity, and mice immunized with a P. falciparum vaccine are protected against challenge with hybrid sporozoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号