首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vassiliev S  Lee CI  Brudvig GW  Bruce D 《Biochemistry》2002,41(40):12236-12243
Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.  相似文献   

2.
Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about 400 micros (K), 2 ms (J), 30 ms (I), and 200 - 500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F(0) at about 3 ns after the illumination is switched on lasting to about 1 micros, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the F(V)/F(M) ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680(+) is not considered in the simulations or when the electron transfer from Q(A)(-) to Q(B)((-)) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher S state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680(+) and Q(A)(-) is not considered in the simulations or when all OEC is initially in the S(0) state or when the S -state transitions of OEC are slowed down. Slowing down of the S -state transitions of OEC as well as of the electron transfer from Q(A)(-) to Q(B)((-)) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the S -state transitions of OEC as well as in the case of full inhibition of the electron donation to P680(+) by Y(Z), the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the alpha/beta and the Q(B) -reducing/Q(B)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.  相似文献   

3.
Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degrees C resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by F(v)/F(m). In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22% decrease in F(v)/F(m). Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSII revealed that S(2)Q(A)(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox pair and lower activation energy for the S(2)Q(B)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSII electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)Q(A)(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.  相似文献   

4.
Its superior quantum efficiency renders PSII a model for biomimetic systems. However, also in biological water oxidation by PSII, the efficiency is restricted by recombination losses. By laser-flash illumination, the secondary radical pair, P680(+)Q(-) (A) (where P680 is the primary Chl donor in PSII and Q(A), primary quinone acceptor of PSII), was formed in close to 100% of the PSII. Investigation of the quantum efficiency (or yield) of the subsequent steps by time-resolved delayed (10 micros to 60 ms) and prompt (70 micros to 700 ms) Chl fluorescence measurements on PSII membrane particles suggests that (1) the effective rate for P680(+) Q(-) (A) recombination is approximately 5 ms(-1) with an activation energy of approximately 0.34 eV, circumstantially confirming dominating losses by reformation of the primary radical pair followed by ground-state recombination. (2) Because of compensatory influences on recombination and forward reactions, the efficiency is only weakly temperature dependent. (3) Recombination losses are several-fold enhanced at lower pH. (4) Calculation based on delayed-fluorescence data suggests that the losses depend on the state of the water-oxidizing manganese complex, being low in the S(0)-->S(1) and S(1)-->S(2) transition, clearly higher in S(2)-->S(3) and S(3)-->S(4)-->S(0). (5) For the used artificial electron acceptor, the efficiency is limited by acceptor-side processes/S-state decay at high/low photon-absorption rates resulting in optimal efficiency at surprisingly low rates of approximately 0.15-15 photons s(-1) (per PSII). The pH and S-state dependence can be rationalized by the basic model of alternate electron-proton removal proposed elsewhere. A physiological function of the recombination losses could be limitation of the lifetime of the reactive donor-side tyrosine radical (Y(.) (Z)) in the case of low-pH blockage of water oxidation.  相似文献   

5.
Treatment with the herbicide acifluorfen-sodium (AF-Na), an inhibitor of protoporphyrinogen oxidase, caused an accumulation of protoporphyrin IX (Proto IX) , light-induced necrotic spots on the cucumber cotyledon within 12-24 h, and photobleaching after 48-72 h of light exposure. Proto IX-sensitized and singlet oxygen ((1)O(2))-mediated oxidative stress caused by AF-Na treatment impaired photosystem I (PSI), photosystem II (PSII) and whole chain electron transport reactions. As compared to controls, the F(v)/F(m) (variable to maximal chlorophyll a fluorescence) ratio of treated samples was reduced. The PSII electron donor NH(2)OH failed to restore the F(v)/F(m) ratio suggesting that the reduction of F(v)/F(m) reflects the loss of reaction center functions. This explanation is further supported by the practically near-similar loss of PSI and PSII activities. As revealed from the light saturation curve (rate of oxygen evolution as a function of light intensity), the reduction of PSII activity was both due to the reduction in the quantum yield at limiting light intensities and impairment of light-saturated electron transport. In treated cotyledons both the Q (due to recombination of Q(A)(-) with S(2)) and B (due to recombination of Q(B)(-) with S(2)/S(3)) band of thermoluminescence decreased by 50% suggesting a loss of active PSII reaction centers. In both the control and treated samples, the thermoluminescence yield of B band exhibited a periodicity of 4 suggesting normal functioning of the S states in centers that were still active. The low temperature (77 K) fluorescence emission spectra revealed that the F(695) band (that originates in CP-47) increased probably due to reduced energy transfer from the CP47 to the reaction center. These demonstrated an overall damage to the PSI and PSII reaction centers by (1)O(2) produced in response to photosensitization reaction of protoporphyrin IX in AF-Na-treated cucumber seedlings.  相似文献   

6.
One prominent difference between the photosystem II (PSII) reaction center protein D1' in Synechocystis 6803 and normal D1 is the replacement of Phe-186 in D1 with leucine in D1'. Mutants of Synechocystis 6803 producing only D1', or containing engineered D1 proteins with Phe-186 substitutions, were analyzed by 77 K fluorescence emission spectra, chlorophyll a fluorescence induction yield and decay kinetics, and flash-induced oxygen evolution. Compared to D1-containing PSII centers, D1' centers exhibited a 50% reduction in variable chlorophyll a fluorescence yield, while the flash-induced O(2) evolution pattern was unaffected. In the F186 mutants, both the P680(+)/Q(A)(-) recombination and O(2) oscillation pattern were noticeably perturbed.  相似文献   

7.
Defining a quantitative relationship between chlorophyll a fluorescence yield and Photosystem II (PS II) function is important to photosynthesis research. Prior work [Peterson and Havir (2003) Photosynth Res 75: 57-70] indicated an apparent effect of psbS genotype on the in vivo rate constant for photochemistry in PS II (k(P0)). The nuclear psbS gene encodes a 22-kDa pigment-binding antenna protein (PS II-S) essential for photoprotective nonphotochemical quenching (NPQ) in PS II. Ten Arabidopsis thaliana lines were chosen for study, encompassing effects on PS II-S expression level and/or structure due to single-site amino acid substitution. Short-term (i.e. seconds) irradiance-dependent changes in steady state fluorescence yields F(o) and F(m)(open and closed centers, respectively) were evaluated for compliance with the reversible radical pair (RRP) model of PS II. All lines (including normal Nicotiana tabacum and Zea mays) deviated from the RRP scheme in the same way indicating that psbS genotype per se does not alter interactions between the antenna and reaction center and thereby affect k(P0). Rather, observed departures from RRP model behavior are consistent with overestimation of F(m) due to perturbing effects of the saturating multiple turnover flash employed in its measurement. Reversal of direct quenching of singlet states by plastoquinone during the flash could occur but by itself cannot account for the anomalous covariation in F(o) and F(m). Reduction of the PS II acceptor side apparently either amplifies the rate constant for fluorescence or suppresses that of xanthophyll-dependent thermal deactivation (q(E)). A procedure was devised that considers F(o) when correcting maximal fluorescence values for measurement bias. A high degree of consistency in assessment of PS II quantum yield based on corrected fluorescence parameters and simultaneous CO(2) exchange measurements was noted under both steady state and transient conditions (360 mul CO(2)l(-1), 1% O(2)).  相似文献   

8.
Photosynthetic gas exchange, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients were used to evaluate PSII photochemistry in the halophyte Suaeda salsa exposed to a combination of high salinity (100-400 mM NaCl) and heat stress (35-47.5 degrees C, air temperature). CO(2) assimilation rate increased slightly with increasing salt concentration up to 300 mM NaCl and showed no decrease even at 400 mM NaCl. Salinity treatment showed neither effects on the maximal efficiency of PSII photochemistry (F(v)/F(m)), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, nor effects on the efficiency of excitation energy capture by open PSII reaction centres (F(v)'/F(m)') and the actual PSII effciency (Phi(PSII)), photochemical quenching (q(P)), and non-photochemical quenching (q(N)) in light-adapted leaves. The results indicate that high salinity had no effects on PSII photochemistry either in a dark-adapted state or in a light-adapted state. With increasing temperature, CO(2) assimilation rate decreased significantly and no net CO(2) assimilation was observed at 47.5 degrees C. Salinity treatment had no effect on the response of CO(2) assimilation to high temperature when temperature was below 40 degrees C. At 45 degrees C, CO(2) assimilation rate in control plants decreased to zero, but the salt-adapted plants still maintained some CO(2) assimilation capacity. On the other hand, the responses of PSII photochemistry to heat stress was modified by salinity treatment. When temperature was above 35 degrees C, the declines in F(v)/F(m), Phi(PSII), F(v)'/F(m)', and q(P) were smaller in salt-adapted leaves compared to control leaves. This increased thermostability was independent of the degree of salinity, since no significant changes in the above-described fluorescence parameters were observed among the plants treated with different concentrations of NaCl. During heat stress, a very clear K step as a specific indicator of damage to the O(2)-evolving complex in the polyphasic fluorescence transients appeared in control plants, but did not get pronounced in salt-adapted plants. In addition, a greater increase in the ratio (F(i)-F(o))/(F(p)-F(o)) which is an expression of the proportion of the Q(B)-non-reducing PSII centres was observed in control plants rather than in salt-adapted plants. The results suggest that the increased thermostability of PSII seems to be associated with the increased resistance of the O(2)-evolving complex and the reaction centres of PSII to high temperature.  相似文献   

9.
The effects of iron limitation on photosystem II (PSII) composition and photochemical energy conversion efficiency were studied in the unicellular chlorophyte alga Dunaliella tertiolecta. The quantum yield of photochemistry in PSII, inferred from changes in variable fluorescence normalized to the maximum fluorescence yield, was markedly lower in iron-limited cells and increased 3-fold within 20 h following the addition of iron. The decrease in the quantum yield of photochemistry was correlated with increased fluorescence emission from the antenna. In iron-limited cells, flash intensity saturation profiles of variable fluorescence closely followed a cumulative one-hit Poisson model, suggesting that PSII reaction centers are energetically isolated, whereas in iron-replete cells, the slope of the profile was steeper and the calculated probability of energy transfer between reaction centers increased to >0.6. Immunoassays revealed that in iron-limited cells the reaction center proteins, D1, CP43, and CP47, were markedly reduced relative to the peripheral light-harvesting Chl-protein complex of PSII, whereas the [alpha] subunit of cytochrome b559 was about 10-fold higher. Spectroscopic analysis established that the cytochrome b559 peptide did not contain an associated functional heme. We conclude that the photochemical conversion of absorbed excitation energy in iron-limited cells is limited by the number of photochemical traps per unit antenna.  相似文献   

10.
W F Beck  G W Brudvig 《Biochemistry》1987,26(25):8285-8295
The reaction of hydroxylamine with the O2-evolving center of photosystem II (PSII) in the S1 state delays the advance of the H2O-oxidation cycle by two charge separations. In this paper, we compare and contrast the reactions of hydroxylamine and N-methyl-substituted analogues with the electron-donor side of PSII in both O2-evolving and inactivated [tris(hydroxymethyl)aminomethane- (Tris-) washed] spinach PSII membrane preparations. We have employed low-temperature electron paramagnetic resonance (EPR) spectroscopy in order to follow the oxidation state of the Mn complex in the O2-evolving center and to detect radical oxidation products of hydroxylamine. When the reaction of hydroxylamine with the S1 state in O2-evolving membranes is allowed to proceed to completion, the S2-state multiline EPR signal is suppressed until after three charge separations have occurred. Chemical removal of hydroxylamine from treated PSII membrane samples prior to illumination fails to reverse the effects of the dark reaction, which argues against an equilibrium coordination of hydroxylamine to a site in the O2-evolving center. Instead, the results indicate that the Mn complex is reduced by two electrons by hydroxylamine, forming the S-1 state. An additional two-electron reduction of the Mn complex to a labile "S-3" state probably occurs by a similar mechanism, accounting for the release of Mn(II) ions upon prolonged dark incubation of O2-evolving membranes with high concentrations of hydroxylamine. In N,N-dimethylhydroxylamine-treated, Tris-washed PSII membranes, which lack O2 evolution activity owing to loss of the Mn complex, a large yield of dimethyl nitroxide radical is produced immediately upon illumination at temperatures above 0 degrees C. The dimethyl nitroxide radical is not observed upon illumination under similar conditions in O2-evolving PSII membranes, suggesting that one-electron photooxidations of hydroxylamine do not occur in centers that retain a functional Mn complex. We suggest that the flash-induced N2 evolution observed in hydroxylamine-treated spinach thylakoid membrane preparations arises from recombination of hydroxylamine radicals formed in inactivated O2-evolving centers.  相似文献   

11.
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (F(m), PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (F(o), PSII centers open) decreased the quantum efficiency of PSII proportionally. For both F(m) and F(o), the non-photochemical quenching expressed as F/F' - 1 (with F' the quenched level) was proportional to the DT concentration. However, the quenching of F(o) relative to that of F(m) was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters.  相似文献   

12.
Hwang HJ  Nagarajan A  McLain A  Burnap RL 《Biochemistry》2008,47(37):9747-9755
The light-driven oxidative assembly of Mn (2+) ions into the H 2O oxidation complex (WOC) of the photosystem II (PSII) reaction center is termed photoactivation. The fluorescence yield characteristics of Synechocystis sp. PCC6803 cells undergoing photoactivation showed that basal fluorescence, F 0, exhibited a characteristic decline when red, but not blue, measuring light was employed. This result was traced to a progressive increase in the coupling of the phycobilisome (PBS) to the PSII reaction center as determined by observing the changes in room temperature and 77 K fluorescence emission spectra that accompany photoactivation. The results support the hypothesis that strong energetic coupling of the PBS to the PSII reaction center depends upon the formation of an active WOC, which presumably diminishes the likelihood of photodamage to reaction centers that have either lost an intact Mn cluster or are in the process of assembling an active WOC.  相似文献   

13.
To analyze the physiological mechanisms underlying the increased tolerance to drought and high temperature stress combination by overproduction of glycinebetaine (GB) in wheat, a transgenic wheat line T6 and its wild-type (WT) Shi4185 were used. The transgenic line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into a wheat line Shi4185. The gene was cloned from Garden Orache (Atriplex hortensis L.). Wheat plants were exposed to drought (withholding irrigation), high temperature stress (40 °C), and their combination at the flowering stage. Analyses of oxygen-evolving activity and photosystem II (PSII) photochemistry, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants. The results suggest that the PSII in transgenic plants showed higher resistance than that in wild-type plants under the stresses studied here, this increased tolerance was associated with an improvement in stability of the oxygen-evolving complex and the reaction center of PSII; streptomycin treatment can impair the protective effect of overaccumulated GB on PSII. The overaccumulated GB may protect the PSII complex from damage through accelerating D1 protein turnover to alleviate photodamage. The results also suggest that the PSII under combined high temperature and drought stress shows higher tolerance than under high temperature stress alone in both transgenic and wild-type plants.  相似文献   

14.
15.
Charge recombination of the primary radical pair in D1/D2 reaction centers from photosystem 2 has been studied by time-resolved fluorescence and absorption spectroscopy. The kinetics of the primary radical pair are multiexponential and exhibit at least two lifetimes of 20 and 52 ns. In addition, a third lifetime of approximately 500 ps also appears to be present. These multiexponential charge-recombination kinetics reflect either different conformational states of D1/D2 reaction centers, with the different conformers exhibiting different radical pair lifetimes, or relaxations in the free energy of the radical pair state. Whichever model is invoked, the free energies of formation of the different radical pair states exhibit a linear temperature dependence from 100 to 220 K, indicating that they are dominated by entropy with negligible enthalpy contributions. These results are in agreement with previous determinations of the thermodynamics that govern primary charge separation in both D1/D2 reaction centers [Booth, P.J., Crystall, B., Giorgi, L. B., Barber, J., Klug, D.R., & Porter, G. (1990) Biochim. Biophys. Acta 1016, 141-152] and reaction centers of purple bacteria [Woodbury, N.W.T., & Parson, W.W. (1984) Biochim. Biophys. Acta 767, 345-361]. It is possible that these observations reflect structural changes that accompanying primary charge separation and assist in stabilization of the radical pair state thus optimizing the efficiency of primary electron transfer.  相似文献   

16.
I Vass  D Kirilovsky  A L Etienne 《Biochemistry》1999,38(39):12786-12794
We studied the effect of UV-B radiation (280-320 nm) on the donor- and acceptor-side components of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803 by measuring the relaxation of flash-induced variable chlorophyll fluorescence. UV-B irradiation increases the t(1/2) of the decay components assigned to reoxidation of Q(A)(-) by Q(B) from 220 to 330 micros in centers which have the Q(B) site occupied, and from 3 to 6 ms in centers with the Q(B) site empty. In contrast, the t(1/2) of the slow component arising from recombination of the Q(A)Q(B)(-) state with the S(2) state of the water-oxidizing complex decreases from 13 to 1-2 s. In the presence of DCMU, fluorescence relaxation in nonirradiated cells is dominated by a 0.5-0.6 s component, which reflects Q(A)(-) recombination with the S(2) state. After UV-B irradiation, this is partially replaced by much faster components (t(1/2) approximately 800-900 micros and 8-10 ms) arising from recombination of Q(A)(-) with stabilized intermediate photosystem II donors, P680(+) and Tyr-Z(+). Measurement of fluorescence relaxation in the presence of different concentrations of DCMU revealed a 4-6-fold increase in the half-inhibitory concentration for electron transfer from Q(A) to Q(B). UV-B irradiation in the presence of DCMU reduces Q(A) in the majority (60%) of centers, but does not enhance the extent of UV-B damage beyond the level seen in the absence of DCMU, when Q(A) is mostly oxidized. Illumination with white light during UV-B treatment retards the inactivation of PSII. However, this ameliorating effect is not observed if de novo protein synthesis is blocked by lincomycin. We conclude that in intact cyanobacterium cells UV-B light impairs electron transfer from the Mn cluster of water oxidation to Tyr-Z(+) and P680(+) in the same way that has been observed in isolated systems. The donor-side damage of PSII is accompanied by a modification of the Q(B) site, which affects the binding of plastoquinone and electron transport inhibitors, but is not related to the presence of Q(A)(-). White light, at the intensity applied for culturing the cells, provides protection against UV-B-induced damage by enhancing protein synthesis-dependent repair of PSII.  相似文献   

17.
The toxic effects of cadmium on the photosynthetic apparatus of Avicennia germinans were evaluated by means of the chlorophyll fluorescence transient O-J-I-P. The chlorophyll fluorescence transients were recorded in vivo with high time resolution and analyzed according to the OJIP-test that can quantify the performance of photosystem II. Cadmium-treated plants showed a decrease in yield for primary photochemistry, TR0/ABS. The performance index of photosystem II (PSII), PI(ABS), decreased due to cadmium treatment. This performance index is the combination of the indexes of three independent parameters: (1) total number of active reaction centers per absorption (RC/ABS), (2) yield of primary photochemistry (TR0/ABS), and (3) efficiency with which a trapped exciton can move an electron into the electron transport chain (ET0/TR0). Additionally, the F0/Fv registered the highest sensitivity to the metal, thus indicating that the water-splitting apparatus of the oxidizing side of PSII is the primary site of action of cadmium. In summary, cadmium affects several targets of photosystem II. More specifically the main targets of cadmium, according to the OJIP-test, can be listed as a decrease in the number of active reaction centers and damage to the activity of the water-splitting complex.  相似文献   

18.
The stability of PSII in leaves of the resurrection plant Haberlea rhodopensis to high temperature and high light intensities was studied by means of chlorophyll fluorescence measurements. The photochemical efficiency of PSII in well-hydrated Haberlea leaves was not significantly influenced by temperatures up to 40 degrees C. Fo reached a maximum at 50 degrees C, which is connected with blocking of electron transport in reaction center II. The intrinsic efficiency of PSII photochemistry, monitored as Fv/Fm was less vulnerable to heat stress than the quantum yield of PSII electron transport under illumination (phiPSII). The reduction of phiPSII values was mainly due to a decrease in the proportion of open PSII centers (qP). Haberlea rhodopensis was very sensitive to photoinhibition. The light intensity of 120 micromol m(-2) s(-1) sharply decreased the quantum yield of PSII photochemistry and it was almost fully inhibited at 350 micromol m(-2) s(-1). As could be expected decreased photochemical efficiency of PSII was accompanied by increased proportion of thermal energy dissipation, which is considered as a protective effect regulating the light energy distribution in PSII. When differentiating between the three components of qN it was evident that the energy-dependent quenching, qE, was prevailing over photoinhibitory quenching, qI, and the quenching related to state 1-state 2 transitions, qT, at all light intensities at 25 degrees C. However, the qE values declined with increasing temperature and light intensities. The qI was higher than qE at 40 degrees C and it was the major part of qN at 45 degrees C, indicating a progressing photoinhibition of the photosynthetic apparatus.  相似文献   

19.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

20.
The functioning of the photosynthetic apparatus of cotton (Gossypium hirsutum) grown during the onset of water limitation was studied by gas-exchange and chlorophyll fluorescence to better understand the adaptation mechanisms of the photosynthetic apparatus to drought conditions. For this, cotton was grown in the field in Central Asia under well-irrigated and moderately drought-stressed conditions. The light and CO(2) responses of photosynthesis (A(G)), stomatal conductance (g(s)) and various chlorophyll fluorescence parameters were determined simultaneously. Furthermore, chlorophyll fluorescence images were taken from leaves to study the spatial pattern of photosystem II (PSII) efficiency and non-photochemical quenching parameters. Under low and moderate light intensity, the onset of drought stress caused an increase in the operating quantum efficiency of PSII photochemistry (varphi(PSII)) which indicated increased photorespiration since photosynthesis was hardly affected by water limitation. The increase in varphi(PSII) was caused by an increase of the efficiency of open PSII reaction centers (F(v)'/F(m)') and by a decrease of the basal non-photochemical quenching (varphi(NO)). Using a chlorophyll fluorescence imaging system a low spatial heterogeneity of varphi(PSII) was revealed under both irrigation treatments. The increased rate of photorespiration in plants during the onset of drought stress can be seen as an acclimation process to avoid an over-excitation of PSII under more severe drought conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号