首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronmicroscopic appearances of pulmonary capillaries were studied in rabbit lungs perfused in situ when the capillary transmural pressure (Ptm) was systematically raised from 12.5 to 72.5 +/- 2.5 cmH2O. The animals were anesthetized and exsanguinated, and after the chest was opened, the pulmonary artery and left atrium were cannulated and attached to reservoirs. The lungs were perfused with autologous blood for 1 min, and this was followed by saline-dextran and then buffered glutaraldehyde to fix the lungs for electron microscopy. Normal appearances were seen at 12.5 cmH2O Ptm. At 52.5 and 72.5 cmH2O Ptm, striking discontinuities of the capillary endothelium and alveolar epithelium were seen. A few disruptions were seen at 32.5 cmH2O Ptm (mostly in one animal), but the number of breaks per millimeter cell lining increased markedly up to 72.5 cmH20 Ptm, where the mean frequency was 27.8 +/- 8.6 and 13.6 +/- 1.4 (SE) breaks/mm for endothelium and epithelium, respectively. In some instances, all layers of the blood-gas barrier were disrupted and erythrocytes could be seen moving into the alveolar spaces. In about half the endothelial and epithelial breaks, the basement membranes remained intact. The average break lengths for both endothelium and epithelium did not change significantly with pressure. The width of the blood-gas barrier increased at 52.5 and 72.5 cmH2O Ptm as a result of widening of the interstitium caused by edema. The cause of the disruptions is believed to be stress failure of the capillary wall. The results show that high capillary hydrostatic pressures cause major changes in the ultrastructure of the walls of the capillaries, leading to a high-permeability form of edema.  相似文献   

2.
We previously showed that when the pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to determine whether some of the ultrastructural changes are rapidly reversible when the capillary pressure is reduced. To test this, the Ptm was raised to 52.5 cmH2O for 1 min of blood perfusion and then reduced to 12.5 cmH2O for 3 min of saline-dextran perfusion, followed by intravascular fixation at the same pressure. In another group of animals, the pressure was elevated for 1 min of blood and 3 min of saline-dextran before being reduced. The results were compared with previous studies in which the capillary pressures were maintained elevated at 52.5 cmH2O during the entire procedure. Control studies were also done at sustained low pressures. The results showed that the number of endothelial and epithelial breaks per millimeter and the total fraction area of the breaks were reduced when the pressure was lowered. For example, the number of endothelial breaks per millimeter decreased from 7.1 +/- 2.1 to 2.4 +/- 0.7, and the number of epithelial breaks per millimeter fell from 11.4 +/- 3.7 to 3.4 +/- 0.7. There was evidence that the breaks that closed were those that were initially small and were associated with an intact basement membrane. The results suggest that cells can move along their underlying matrix by rapid disengagement and reattachment of cell adhesion molecules, causing breaks to open or close within minutes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

4.
The pulmonary capillaries of neonatal lungs are potentially vulnerable to stress failure because of the complex changes in the pulmonary circulation that occur at birth. We perfusion fixed the lungs from nine anesthetized newborn rabbits at capillary transmural pressures (P(tm)) of 5 +/- 5, 10 +/- 5, and 15 +/- 5 cmH(2)O. Normal microscopic appearances were seen at P(tm) values of 5 +/- 5 and 10 +/- 5 cmH(2)O, but massive airway edema was observed in lungs perfused at a P(tm) of 15 +/- 5 cmH(2)O. Consistent with this, no disruptions of the alveolar epithelium were observed at P(tm) values of 5 +/- 5 cmH(2)O, but mean values of 0.11 and 1.22 breaks/mm epithelium were found at P(tm) of 10 +/- 5 and 15 +/- 5 cmH(2)O, respectively (P < 0.05 for 5 +/- 5 vs. 15 +/- 5 cmH(2)O). These pressures are in striking contrast to those in the adult rabbit in which, by a similar procedure, a P(tm) of 52.5 cmH(2)O, is required before stress failure is consistently seen. We conclude that stress failure of pulmonary capillaries in newborn rabbit lungs can occur at P(tm) values of less than one-third of those that are required in adult lungs.  相似文献   

5.
To investigate the effects of airway cartilage softening on tracheal mechanics, pressure-volume (PV) curves of excised tracheas were studied in 12 rabbits treated with 100 mg/kg iv papain, whereas 14 control animals received no pretreatment. The animals were killed 24 h after the injection and the excised specimens studied 24 h later. Treated tracheas exhibited decreased ability to withstand negative transmural pressures, reflected in increased collapse compliance: 6.2 +/- 2.1 vs. 2.0 +/- 0.5% peak volume (Vmax)/cmH2O means +/- SD, P less than 0.001, (Vmax = extrapolated maximal tracheal volume), increased kc (exponential constant that reflects the shape of collapse limb of the PV curve): 0.244 +/- 0.077 vs. 0.065 +/- 0.015 (P less than 0.001). The distension limb of the PV curve greater than 2.5 cmH2O transmural pressure (Ptm) was no different. Compliance between 0 and 2.5 cmH2O Ptm was increased in papain-treated rabbits: 4.97 +/- 1.73 vs. 2.30 +/- 0.31% Vmax/cmH2O (P less than 0.001). Tracheal volume, and therefore mean diameter, was decreased at 0 Ptm: 2.7 +/- 0.26 vs. 3.2 +/- 0.27 mm (P less than 0.001). We conclude that airway cartilage softening increases the compliance of the trachea at pressures less than 2.5 cmH2O Ptm.  相似文献   

6.
The pressure-volume (P-V) characteristics of the lung microcirculation are important determinants of the pattern of pulmonary perfusion and of red and white cell transit times. Using diffuse light scattering, we measured capillary P-V loops in seven excised perfused dog lobes at four lung volumes, from functional residual capacity (FRC) to total lung capacity (TLC), over a wide range of vascular transmural pressures (Ptm). At Ptm 5 cmH(2)O, specific compliance of the microvasculature was 8.6%/cmH(2)O near FRC, decreasing to 2.7%/cmH(2)O as lung volume increased to TLC. At low lung volumes, the vasculature showed signs of strain stiffening (specific compliance fell as Ptm rose), but stiffening decreased as lung volume increased and was essentially absent at TLC. The P-V loops were smooth without sharp transitions, consistent with vascular distension as the primary mode of changes in vascular volume with changes in Ptm. Hysteresis was small (0.013) at all lung volumes, suggesting that, although surface tension may set basal capillary shape, it does not strongly affect capillary compliance.  相似文献   

7.
The involvement of pulmonary circulation in the mechanical properties was studied in isolated rat lungs. Pulmonary input impedance (ZL) was measured at a mean transpulmonary pressure (Ptpmean) of 2 cmH2O before and after physiological perfusion with either blood or albumin. In these lungs and in a group of unperfused lungs, ZL was also measured at Ptpmean values between 1 and 8 cmH2O. Airway resistance (Raw) and parenchymal damping (G) and elastance (H) were estimated from ZL. End-expiratory lung volume (EELV) was measured by immersion before and after blood perfusion. The orientation of the elastin fibers relative to the basal membrane was assessed in additional unperfused and blood-perfused lungs. Pressurization of the pulmonary capillaries significantly decreased H by 31.5 +/- 3.7% and 18.7 +/- 2.7% for blood and albumin, respectively. Perfusion had no effect on Raw but markedly altered the Ptpmean dependences of G and H < 4 cmH2O, with significantly lower values than in the unperfused lungs. At a Ptpmean of 2 cmH2O, EELV increased by 31 +/- 11% (P = 0.01) following pressurization of the capillaries, and the elastin fibers became more parallel to the basal membrane. Because the organization of elastin fibers results in smaller H values of the individual alveolus, the higher H in the unperfused lungs is probably due to a partial alveolar collapse leading to a loss in lung volume. We conclude that the physiological pressure in the pulmonary capillaries is an important mechanical factor in the maintenance of the stability of the alveolar architecture.  相似文献   

8.
We report the first direct measurements of perialveolar interstitial pressures in lungs inflated with negative pleural pressure. In eight experiments, we varied surrounding (pleural) pressure in a dog lung lobe to maintain constant inflation with either positive alveolar and ambient atmospheric pleural pressures (positive inflation) or ambient atmospheric alveolar and negative pleural pressures (negative inflation). Throughout, vascular pressure was approximately 4 cmH2O above pleural pressure. By the micropuncture servo-null technique we recorded interstitial pressures at alveolar junctions (Pjct) and in the perimicrovascular adventitia (Padv). At transpulmonary pressure of 7 cmH2O (n = 4), the difference of Pjct and Pady from pleural pressure of 0.9 +/- 0.4 and -1.1 +/- 0.2 cmH2O, respectively, during positive inflation did not significantly change (P less than 0.05) after negative inflation. After increase of transpulmonary pressure from 7 to 15 cmH2O (n = 4), the decrease of Pjct by 3.3 +/- 0.3 cmH2O and Pady by 2.0 +/- 0.4 cmH2O during positive inflation did not change during negative inflation. The Pjct-Pady gradient was not affected by the mode of inflation. Our measurements indicate that, in lung, when all pressures are referred to pleural or alveolar pressure, the mode of inflation does not affect perialveolar interstitial pressures.  相似文献   

9.
Several manifestations of lung disease during infancy suggest that mechanical interdependence can be relatively high in newborn lungs. To test this possibility, we measured elastic moduli and pleural membrane tension in lungs excised from piglets ranging in age from less than 12 h to 85 days. Near maximum inflation, newborn lungs (less than 12 h, n = 6) had no detectable pleural membrane tension, although 3- to 5-day-old lungs (n = 6) had tension greater than 5,000 dyn/cm. In contrast, parenchymal recoil was greater in the newborn lungs [19.3 +/- 3.0 (SD) vs. 14.3 +/- 2.4 cmH2O at 90% of maximum inflation volume, P less than 0.01]. Shear moduli were higher (13.5 +/- 4.6 vs. 9.2 +/- 1.5 cmH2O at 15 cmH2O transpulmonary pressure, P less than 0.05) and Poisson ratios were lower in the newborn lungs as compared with the 3- to 5-day-old lungs. Postnatal lung growth between 3 and 85 days was characterized by 1) a constant shear modulus (0.6 times transpulmonary pressure); 2) decrease in the bulk modulus (from 6.8 to 5.1 times transpulmonary pressure, P less than 0.005); and 3) evidence of gas trapping at progressively higher transpulmonary pressures. Therefore, growth of parenchyma in the piglet lung is associated with reduced stiffness to volume change but with no effect on overall stiffness to shape change. Nevertheless, a relatively great stiffness to shape change occurs transiently in newborn piglet lungs.  相似文献   

10.
The effect of continuous inflation of lungs at 30 cmH2O transpulmonary pressure (Ptp) on air-space size was assessed by chord length-frequency distribution analysis. Lungs from gerbils were excised, allowed to collapse freely, and inflated to 30 cmH2O Ptp in a humidified chamber kept at 37 degrees C. When the lungs appeared fully inflated with no observable pleural surface atelectasis, the left lung was occluded while the right was maintained at 30 cmH2O for 10 min longer and then occluded. During this time, the right lung increased its volume from 70 to 100%. Then both lungs were quick frozen, freeze dried, and embedded in glycol methacrylate, and 1- to 2-microns-thick histological sections cut. Lungs from a control group of gerbils were similarly inflated to 30 cmH2O, both left and right were occluded, the left was quick frozen immediately, and the right was frozen 10 min later. Chord lengths of air spaces from cranial and caudal lobes of lungs were acquired using a Dapple Systems image analyzer, and a two-population frequency distribution was generated for analysis with an IBM PC. The results indicate that the volume increase during continuous inflation at 30 cmH2O Ptp was associated with a shift in the chord length distribution toward the smaller chord lengths. A two-population statistical analysis indicated that the inflation resulted in an increase in the relative proportion of smaller chord lengths, with no increase in the mean of this smaller population. We conclude that continuous inflation at 30 cmH2O Ptp results in alveolar recruitment.  相似文献   

11.
The velocities of longitudinal and transverse stress waves transmitted through inflated lung parenchyma depend on the lung stiffness, as defined by the bulk and shear moduli, and the lung density. We examined the relationship between stress wave velocities and lung density. A saline-filled reservoir was connected to the vessels of caudal dog lobes held inflated at 5 cmH2O transpulmonary pressure, and vascular volume and extravascular lung water were increased in steps by increasing vascular pressure. At each step, we measured the transmitted signals at locations 2 and 7 cm from an impulse surface distortion by means of microphones embedded in the lung surface. Longitudinal and transverse wave velocities were computed by using cross-correlation analysis of microphone signal pairs. Both wave velocities decreased as lung density increased: as a first approximation, wave velocities were inversely proportional to the square root of lung density. This behavior is consistent with the propagation of small-amplitude stress waves through an elastic continuum. Estimated bulk and shear moduli were 26 and 3.5 cmH2O, respectively, and were consistent with results from quasi-static deformation tests.  相似文献   

12.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

13.
The objective of this investigation was to determine the minimum transpulmonary pressure (PL) at which the forces of interdependence between the airways and the lung parenchyma can prevent airway closure in response to maximal stimulation of the airways in excised canine lobes. We first present an analysis of the relationship between PL and the transmural pressure (Ptm) that airway smooth muscle must generate to close the airways. This analysis predicts that airway closure can occur at PL less than or equal to 10 cmH2O with maximal airway stimulation. We tested this prediction in eight excised canine lobes by nebulizing 50% methacholine into the airways while the lobe was held at constant PL values ranging from 25 to 5 cmH2O. Airway closure was assessed by comparing changes in alveolar pressure (measured by an alveolar capsule technique) and pressure at the airway opening during low-amplitude oscillations in lobar volume. Airway closure occurred in two of the eight lobes at PL = 10 cmH2O; in an additional five it occurred at PL = 7.5 cmH2O. We conclude that the forces of parenchymal interdependence per se are not sufficient to prevent airway closure at PL less than or equal to 7.5 cmH2O in excised canine lobes.  相似文献   

14.
The isobaric and isovolumetric properties of intrapulmonary arteries were evaluated by placing a highly compliant balloon inside arterial segments. The passive pressure-volume (P-V) curve was obtained by changing volume (0.004 ml/s) and measuring pressure. The isobaric active volume change (delta V) or isovolumetric active pressure change (delta P) generated by submaximal histamine was measured at four different transmural pressures (Ptm's) reached by balloon inflation. The maximal delta P = 11.2 +/- 0.6 cmH2O (mean +/- SE) was achieved at 30.8 +/- 1.2 cmH2O Ptm and maximal delta V = 0.20 +/- 0.02 ml at 16.7 +/- 1.7 cmH2O Ptm. The P-V relationships were similar when volume was increased after either isobaric or isovolumetric contraction. The calculated length-tension (L-T) relationship showed that the active tension curve was relatively flat and that the passive tension at the optimal length was 149 +/- 11% of maximal active tension. These data show that 1) a large elastic component operates in parallel with the smooth muscle in intralobar pulmonary arteries, and 2) the change in resistance associated with vascular expansion of the proximal arteries is independent of the type of contraction that occurs in the more distal arterial segments.  相似文献   

15.
The exact site of airway narrowing in asthma and chronic obstructive pulmonary disease is unknown. High-resolution computed tomography (HRCT) is a sensitive noninvasive imaging technique that can be used to measure airway dimensions. After determining the optimal computed tomographic parameters using a phantom, we measured lobe volume and airway dimensions of isolated canine lung lobes at a transpulmonary pressure of 25 cmH2O. These measurements were repeated after deflation and administration of aerosolized saline and carbachol (256 mg/ml). Lobe volume decreased with all treatments. The maximal lobar volume change was 26% at 6 cmH2O after carbachol. Average airway lumen area decreased with all treatments. After carbachol, at transpulmonary pressures of 25, 15, 10, 8, and 6 cmH2O, lumen area decreased by 7.3 +/- 4.1, 62.0 +/- 4.9, 77.5 +/- 3.0, 31.9 +/- 9.0, and 95.2 +/- 1.0% (SE), respectively. When the airways were divided into four categories on the basis of initial lumen diameter (less than 2, 2-4, 4-6, and greater than 6 mm), the greatest decreases in luminal area after carbachol were seen in intermediate-sized airways (2-4 mm, 56 +/- 4%; 4-6 mm, 59 +/- 3%). HRCT can be used to make accurate measurements of airway dimensions and airway narrowing in excised lungs. HRCT may allow measurement of airway wall thickness and determination of the site of airway narrowing in asthma.  相似文献   

16.
After resecting the intercostal muscles and thinning the endothoracic fascia, we micropunctured the lung tissue through the intact pleural space at functional residual capacity (FRC) and at volumes above FRC to evaluate the effect of increasing parenchymal stresses on pulmonary interstitial pressure (Pip). Pip was measured at a depth of approximately 230 microns from the pleural surface, at 50% lung height, in 12 anesthetized paralyzed rabbits oxygenated via a tracheal tube with 50% humidified O2. Pip was -10 +/- 1.5 cmH2O at FRC. At alveolar pressure of 5 and 10 cmH2O, lung volume increased by 8.5 and 19 ml and Pip decreased to -12.4 +/- 1.6 and -12.3 +/- 5 cmH2O, respectively. For the same lung volumes held by decreasing pleural surface pressure to about -5 and -8.5 cmH2O, Pip decreased to -17.4 +/- 1.6 and -23.8 +/- 5 cmH2O, respectively. Because Pip is more negative than pleural pressure, the data suggest that in intact pulmonary interstitium the pressure of the liquid phase is primarily set by the mechanisms controlling interstitial fluid turnover.  相似文献   

17.
Ventilator management decisions in acute lung injury could be better informed with knowledge of the patient's transpulmonary pressure, which can be estimated using measurements of esophageal pressure. Esophageal manometry is seldom used for this, however, in part because of a presumed postural artifact in the supine position. Here, we characterize the magnitude and variability of postural effects on esophageal pressure in healthy subjects to better assess its significance in patients with acute lung injury. We measured the posture-related changes in relaxation volume and total lung capacity in 10 healthy subjects in four postures: upright, supine, prone, and left lateral decubitus. Then, in the same subjects, we measured static pressure-volume characteristics of the lung over a wide range of lung volumes in each posture by using an esophageal balloon catheter. Transpulmonary pressure during relaxation (PLrel) averaged 3.7 (SD 2.0) cmH2O upright and -3.3 (SD 3.2) cmH2O supine. Approximately 58% of the decrease in PLrel between the upright and supine postures was due to a corresponding decrease in relaxation volume. The remaining 2.9-cmH2O difference is consistent with reported values of a presumed postural artifact. Relaxation volumes and pressures in prone and lateral postures were intermediate. To correct estimated transpulmonary pressure for the effect of lying supine, we suggest adding 3 cmH2O (95% confidence interval: -1 to +7 cmH2O). We conclude that postural differences in estimated transpulmonary pressure at a given lung volume are small compared with the substantial range of PLrel in patients with acute lung injury.  相似文献   

18.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

19.
Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.  相似文献   

20.
We examined the effect of the air interface on pulmonary vascular resistance (PVR) in zones 1, 2, and 3 by comparing pressure-flow data of air- and liquid-filled isolated rabbit lungs. Lungs were perfused with Tyrode's solution osmotically balanced with 1% albumin and 4% dextran and containing the vasodilator papaverine (0.05 mg/ml). Lung volume was varied by negative pleural pressure form 0 to -25 cmH2O. Pulmonary artery (Ppa) and venous (Ppv) pressures were fixed at various levels relative to the lung base. Alveolar pressure (PA) was always zero, and perfusate flow was measured continuously. In zone 1 Ppa was -2.5 cmH2O and Ppv was -15 cmH2O. In zone 2 Ppa was 10 cmH2O and Ppv was -5 cmH2O. In zone 3 Ppa was 15 cmH2O and Ppv was 8 cmH2O. We found that in zone 1 the interface was essential for perfusion, but in zones 2 and 3 it had much lesser effects. In general, PVR depended almost uniquely (i.e., with small hysteresis) on transpulmonary pressure, whereas a large hysteresis existed between PVR and lung volume. PVR was high in collapsed and especially in atelectatic lungs, fell sharply with moderate inflation, and within the ranges of vascular pressure studied did not rise again toward total lung capacity. These results suggest that in zone 1 the interface maintains the patency of some alveolar vessels, probably in corners. The majority of alveolar septal vessels appears to be exposed directly to PA in zones 2 and 3, because at equal transpulmonary pressure the PVR is similar in the presence or absence of an interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号