首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism   总被引:3,自引:0,他引:3  
A E Pegg  K C Tang  J K Coward 《Biochemistry》1982,21(20):5082-5089
Exposure of mammalian cells (transformed mouse fibroblasts or rat hepatoma cells) to S-adenosyl-1,8-diamino-3-thiooctane produced profound changes in the intracellular polyamine content. Putrescine was increased and spermidine was decreased, consistent with the inhibition of spermidine synthase by this compound, which is a potent and specific "transition-state analogue inhibitor" of the isolated enzyme in vitro. The spermine content of the cells was increased by exposure to this drug presumably since spermine synthase was able to use a greater proportion of the available decarboxylated S-adenosylmethionine when spermidine synthase was inhibited. The decarboxylated S-adenosylmethionine content rose substantially because the activity of S-adenosylmethionine decarboxylase was increased in response to the decline in spermidine. These results indicate that S-adenosyl-1,8-diamino-3-thiooctane is taken up by mammalian cells and is an effective inhibitor of spermidine synthase in vivo and that S-adenosylmethionine decarboxylase is regulated by the content of spermidine, but not of spermine. The growth of SV-3T3 cells was substantially reduced in the presence of S-adenosyl-1,8-diamino-3-thiooctane at concentrations of 50 microM or greater. Such inhibition was reversed by the addition of spermidine but not by putrescine. When SV-3T3 cells were exposed to 5 mM alpha-(difluoromethyl)ornithine and 50 microM S-adenosyl-1,8-diamino-3-thiooctane, the content of all polyamines was reduced. Putrescine and spermidine declined by more than 90% and spermine by 80%. Such cells grew very slowly unless spermidine was added.  相似文献   

2.
S-Adenosyl-L-methionine decarboxylases were purified from rat ventral prostate, yeast (Saccharomyces cerevisiae), slime mould (Physarum polycephalum) and bacteria (Escherichia coli) and tested for inhibition by a variety of nucleosides related to S-adenosylmethionine and by methyl- and ethyl-glyoxal bis(guanylhydrazone). Although the enzymes from these different sources are markedly different with respect to activation by cations, the inhibition by nucleosides was quite similar. Very little inhibition was seen when analogues of S-adenosylmethionine with a different base were tested or when the ribose ring was opened or the positive charge on the sulphur atom was not present. Some derivatives in which the amino acid portion of the molecule was altered were more potent inhibitors, but again there was little difference between the enzymes from different sources. 5'-(Dimethylsulphonio)-5'-deoxyadenosine and S-adenosyl-3-methylthiopropylamine were the most inhibitory substances and had similar Ki values, suggesting that the aminopropyl group does not contribute significantly to the binding. All of the S-adenosylmethionine decarboxylases were strongly competitively inhibited by methylglyoxal bis(guanylhydrazone) and even more powerfully by its ethyl analogue, although the putrescine-activated enzymes from prostate and yeast were more sensitive than the bacterial and slime-mould enzymes. All of the S-adenosylmethionine decarboxylases tested bound to a column of methylglyoxal bis(guanylhydrazone) linked to Sepharose and were not eluted by 0.5 M-NaCl, but could be released by 1 mM concentrations of the drug, providing a rapid and efficient method for their purification.  相似文献   

3.
K Dimock  C M Stolzfus 《Biochemistry》1978,17(17):3627-3632
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases.  相似文献   

4.
A number of nucleosides related to S-adenosylmethionine were tested for their inhibitory action on three enzymes involved in the biosynthesis of polyamines. The particular objective of the experiments was to determine whether any of the compounds could be used as selective inhibitors of the synthesis of spermine by spermine synthase. None of the nucleosides examined were potent inhibitors of S-adenosylmethionine decarboxylase. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine dihydrochloride was quite a strong inhibitor of spermidine synthase (I50 of 7 microM) but was more than an order of magnitude less active than S-adenosyl-1,8-diamino-3-thiooctane, which is a mechanism-based inhibitor of this enzyme. 5'-[(3-Aminopropyl)amino]-5'-deoxyadenosine also inhibited spermine synthase with an I50 of 17 microM, but more selective inhibition of spermine synthase was produced by 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine (I50 of 12 microM) and by dimethyl(5'-adenosyl)sulfonium perchlorate (I50 of 8 microM) since these compounds were much less active against spermidine synthase. Both 9-[6(RS),8-diamino-5,6,7,8-tetradeoxy-beta-D-ribo-octofuranosyl]-9 H-purin-6- amine and dimethyl(5'-adenosyl)sulfonium perchlorate were able to reduce the synthesis of spermine in SV-3T3 cells, but there was a compensatory increase in the concentration of spermidine, and there was no effect on cell growth. These results and those from experiments in which these spermine synthesis inhibitors were combined with inhibitors of spermidine synthase and ornithine decarboxylase indicated that the cells compensated for the inhibition of the aminopropyltransferases by increasing the production of decarboxylated S-adenosylmethionine and putrescine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Reovirus mRNA synthesis in vitro by the virion-associated RNA polymerase was only slightly (10 to 15%) diminished in the presence of 2 mM S-adenosylethionine. However, methyl group transfer from S-adenosylmethionine (0.05 mM) to the 5'-terminal cap structure, m7GpppGm in this mRNA was markedly inhibited (80%) under these conditions. Replacement of S-adenosylmethionine by S-adenosylethionine (5 mM) yielded mRNAs containing mainly (70%) 5'-terminal e7GpppGe and e7GpppG, but some of the products were unalkylated (5'-GpppG, ppG). The ethylated mRNAs, but not the unalkylated molecules, bound to wheat germ ribosomes and were translated essentially as well as the corresponding methylated mRNAs in wheat germ extracts and in nuclease-treated rabbit reticulocyte lysates. Protein synthesis directed by ethylated mRNAs in wheat germ extract was 80% decreased by 0.1 mM m7GMP. Under conditions of limited initiation, methylated mRNA bound to wheat germ ribosomes preferentially as compared to ethylated mRNA. The results document for the first time the synthesis of ethylated mRNA and support the hypothesis that N7-alkylation of the 5'-guanosine in caps, rather than methylation itself, is important for the enhancing effect of cap on the initiation of eukaryotic protein synthesis.  相似文献   

6.
Transport of S-adenosylmethionine in Saccharomyces cerevisiae   总被引:11,自引:8,他引:3  
The properties of a specific system for the transport of S-adenosylmethionine in yeast are described. The process was pH-, temperature-, and energy-dependent, and showed saturation kinetics. The K(m) for the system was 3.3 x 10(-6)m. Of the S-adenosylmethionine moieties tested, only S-adenosylhomocysteine competitively inhibited the uptake of the adenosylsulfonium compound. Adenine, adenosine, methionine, homocysteine, and the sulfonium compound S-methylmethionine were without effect. The analogue S-adenosylethionine showed competitive inhibition. Under conditions of inhibition of protein synthesis by cycloheximide or methionine starvation, permease activity was stable. The mutant sam-p3 apparently was able to transport S-adenosylmethionine only by diffusion. Uptake by diploids containing this mutation was directly proportional to the gene dose.  相似文献   

7.
Spermidine synthase (EC 2.5.1.16) was purified to apparent homogeneity (about 11 000-fold) from bovine brain by affinity chromatography, with S-adenosyl-(5')-3-thiopropylamine linked to Sepharose as the adsorbent. The enzyme preparation was free from S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermine synthase (EC 2.5.1.22) activities. The native enzyme had an apparent Mr of 70 000, was composed of two subunits of equal size, and had an isoelectric point at pH 5.22. The apparent Km values for putrescine and decarboxylated adenosylmethionine [S-adenosyl-(5')-3-methylthiopropylamine] were 40 microM and 0.3 microM respectively. Cadaverine and 1,6-diaminohexane could replace putrescine as the aminopropyl acceptor, although the reaction rates were only 6% and 1% respectively of that obtained with putrescine. Ethyl, propyl and carboxymethyl analogues of decarboxy-S-adenosylmethionine could act as propylamine donors. Both the reaction products, spermidine and 5'-methylthioadenosine, were mixed-type inhibitors of the enzyme. On the basis of initial-velocity and product-inhibition studies, a ping-pong reaction mechanism for the spermidine synthase reaction was ruled out.  相似文献   

8.
Relation between red cell anion exchange and urea transport   总被引:1,自引:0,他引:1  
The new distilbene compound, DCMBT (4,4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid) synthesized by Yoon et al. (Biochim. Biophys. Acta 778 (1984) 385-389) was used to study the relation between urea transport and anion exchange in human red cells. DCMBT, which combines properties of both the specific stilbene anion exchange inhibitor, DIDS, and the water and urea transport inhibitor, pCMBS, had previously been shown to inhibit anion transport almost completely and water transport partially. We now report that DCMBT also inhibits urea transport almost completely and that covalent DIDS treatment reverses the inhibition. These observations provide support for the view that a single protein or protein complex modulates the transport of water and urea and the exchange of anions through a common channel.  相似文献   

9.
A search of the Streptomyces avermitilis genome reveals that its closest homologs are several O-methyltransferases. Among them, one gene (viz., saomt5) was cloned into the pET-15b expression vector by polymerase chain reaction using sequence-specific oligonucleotide primers. Biochemical characterization with the recombinant protein showed that SaOMT5 was S-adenosyl-L-methionine-dependent Omethyltransferase. Several compounds were tested as substrates of SaOMT5. As a result, SaOMT5 catalyzed Omethylation of flavonoids such as 6,7-dihydroxyflavone, 2',3'-dihydroxyflavone, 3',4'-dihydroxyflavone, quercetin, and 7,8-dihydroxyflavone, and phenolic compounds such as caffeic acid and caffeoyl Co-A. These reaction products were analyzed by TLC, HPLC, LC/MS, and NMR spectroscopy. In addition, SaOMT5 could convert phenolic compounds containing ortho-dihydroxy groups into Omethylated compounds, and 6,7-dihydroxyflavone was known to be the best substrate. SaOMT5 converted 6,7- dihydroxyflavone into 6-hydroxy-7-methoxyflavone and 7-hydroxy-6-methoxyflavone, and caffeic acid into ferulic acid and isoferulic acid, respectively. Moreover, SaOMT5 turned out to be a Mg2+-dependent OMT, and the effect of Mg2+ ion on its activity was five times greater than those of Ca2+, Fe2+, and Cu2+ ions, EDTA, and metal-free medium.  相似文献   

10.
Treatment of rats with an ethionine plus adenine or a methionine diet leads not only to a marked increase of the alpha-form isozyme of S-adenosylmethionine synthetase in liver, but also to the accumulation of comparable amounts of S-adenosylethionine and S-adenosylmethionine in liver. Transplantation of ascites tumor cells into mice leads to a marked increase only of the beta-form isozyme in the host liver, but the levels of S-adenosylmethionine do not significantly change in liver.  相似文献   

11.
Nuclei isolated from sea urchin embryos incubated in vitro in the presence of S-adenosyl-[methyl-3H]methionine, methylate their own basic proteins. The protein methylase activity varies during the embryonic development with two peaks of activity at mesenchymal blastula and at young gastrula. Histones H3 and H4 are the main substrates of the reaction. The extent of methylation of the two histones depends on the S-adenosylmethionine concentration. At low S-adenosylmethionine concentrations, the in vitro methyl-accepting ability of H3 is 10-times that of H4, while at high concentrations it is 3-times that of H4. This finding is clearly evident in the equilibrium saturation experiments with blastula and gastrula nuclei, which both show two distinct Km values for S-adenosylmethionine. The major and perhaps only product of methylation is epsilon-N-methyl-lysine. Enzyme activity is clearly correlated with specific embryonic stages, while no correlation is apparent between enzyme activity and the amount of DNA in the embryos.  相似文献   

12.
Protein carboxymethylase of mouse pancreas is both soluble (70%) and particulate (30%). The Km for S-adenosylmethionine is 7.5 x 10(-7) M and the Ki for S-adenosylethionine is 1.3 . 10(-5) M. Administration of an ethionine containing diet results in a decrease in protein carboxymethylase activity. Ethionine ingestion also increases pancreatic amylase content by interfering with digestive enzyme discharge. The reciprocal changes in amylase content and protein carboxymethylase activity can be detected within 12 h of commencing the ethionine administration and are enhanced by simultaneous choline deficiency. These studies support the hypothesis that protein carboxymethylase plays an important role in secretion of exportable material. Inhibition of pancreatic protein carboxymethylase activity in vivo may be one important mechanism by which ethionine interferes with digestive enzyme discharge.  相似文献   

13.
In contrast to Escherichia coli and Salmonella typhimurium, Bacillus subtilis could convert ethionine to S-adenosylethionine (SAE), as can Saccharomyces cerevisiae. This conversion was essential for growth inhibition by ethionine because metE mutants which were deficient in S-adenosylmethionine synthetase activity, were resistant to 10 mM ethionine and converted only a small amount of ethionine to SAE. Another mutation (ethA1) produced partial resistance to ethionine (2 mM) and enabled continual sporulation in glucose medium containing 4 mM DL-ethionine. This sporulation induction probably resulted from the effect of SAE, since it was abolished by the addition of a metE1 mutation. The induction of sporulation was not simply controlled by the ratio of SAE to S-adenosylmethionine, but apparently depended on another effect of the ethA1 mutation, which could be demonstrated by comparing the restriction of clear plaque mutants of bacteriophage phi 105 grown in an ethA1 strain with the restriction of those grown in the standard strain. The phages grown in the ethA1 strain showed increased protection against BsuR restriction. We propose that SAE induces sporulation through the inhibition of a key methylation reaction.  相似文献   

14.
1. The production of (14)CO(2) from S-adenosyl[carboxyl-(14)C]methionine by rat liver extracts was investigated. It was found that, in addition to the well-known cytosolic putrescine-activated S-adenosylmethionine decarboxylase, an activity carrying out the production of (14)CO(2) could be extracted from a latent, particulate or membrane-bound form by treatment with buffer containing 1% (v/v) Triton X-100 [confirming the report of Sturman (1976) Biochim. Biophys. Acta428, 56-69]. 2. The formation of (14)CO(2) by such detergent-solubilized extracts differed from that by cytosolic S-adenosylmethionine decarboxylase in a number of ways. The reaction by the solubilized extracts did not require putrescine and was not directly proportional to time of incubation or the amount of protein added. Instead, activity a showed a distinct lag period and was much greater when high concentrations of the extracts were used. The cytosolic S-adenosylmethionine decarboxylase was activated by putrescine, showed strict proportionality to protein added and the reaction proceeded at a constant rate. Cytosolic activity was not inhibited by homoserine or by S-adenosylhomocysteine, whereas the Triton-solubilized activity was strongly inhibited. 3. By using an acetone precipitate of Triton-treated homogenates as a source of the activity, it was found that decarboxylated S-adenosylmethionine was not present among the products of the reaction, although 5'-methylthioadenosine and 5-methylthioribose were found. Such extracts were able to produce (14)CO(2) when incubated with [U-(14)C]-homoserine, and (14)CO(2) production was greater when S-adenosyl[carboxyl-(14)C]methionine that had been degraded by heating at pH6 at 100 degrees C for 30min (a procedure known to produce mainly 5'-methylthioadenosine and homoserine lactone) was used as a substrate than when S-adenosyl[carboxyl-(14)C]methionine was used. 4. These results indicate that the Triton-solubilized activity is not a real S-adenosylmethionine decarboxylase, but that (14)CO(2) is produced via a series of reactions involving degradation of the S-adenosyl-[carboxyl-(14)C]methionine. It is probable that this degradation can occur via several pathways. Our results would suggest that part of the reaction occurs via the production of S-adenosylhomocysteine, which can then be converted into 2-oxobutyrate via the transsulphuration pathway, and that part occurs via the production of homoserine by an enzyme converting S-adenosylmethionine into 5'-methylthioadenosine and homoserine lactone.  相似文献   

15.
The plasma transport and metabolism of retinoic acid in the rat   总被引:9,自引:4,他引:5       下载免费PDF全文
The transport of retinoic acid in plasma was examined in vitamin A-deficient rats maintained on small doses of radioactively labelled retinoic acid. After ultracentrifugation of serum adjusted to density 1.21, most of the radioactivity (83%) was associated with the proteins of density greater than 1.21, and not with the serum lipoproteins. Gel filtration of the labelled serum on Sephadex G-200 showed that the radioactive label was associated with protein in the molecular-weight range of serum albumin. On polyacrylamide-gel electrophoresis almost all of the recovered radioactivity migrated with serum albumin. Similar esults were obtained with serum from a normal control rat given a single oral dose of [(14)C]retinoic acid. These findings indicate that retinoic acid is transported in rat serum bound to serum albumin, and not by retinol-binding protein (the specific transport protein for plasma retinol). Several tissues and the entire remaining carcase of each rat were extracted with ethanol-acetone to determine the tissue distribution of retinoic acid and some of its metabolites. The total recover of radioactive compounds in in the entire body of the rat was about 7-9mug, representing less than 5% or 10% respectively of the total administered label in the two dosage groups studied. The results confirm that retinoic acid is not stored in any tissue. Most of the radioactive material was found in the carcase, rather than in the specific tissues analysed. Two-thirds of the radioactivity in the carcase appeared to represent unchanged retinoic acid. Of the tissues examined, the liver, kidneys and intestine had relatively high concentrations of radioactive compounds, whereas the testes and fat-pads had the lowest concentrations.  相似文献   

16.
Permeation of a spin-label phosphate into the human erythrocyte.   总被引:1,自引:0,他引:1  
A H Ross  H M McConnell 《Biochemistry》1975,14(13):2793-2798
The reduction of spin-labels by human erythrocytes can be used to follow their penetration into these cells. The neutral spin-label alcohol Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxyl) diffuses through the membrane very quickly. The membrane is virtually impermeable to the positively charged spin-label Tempo-choline (N,N-dimethyl-N-(2',2',6',6'-tetramethyl-4'-piperidinyl-1-oxyl)-2-hydroxyethylammonium chloride). The negatively charged spin-label Tempo phosphate (4-phospho-2,2,6,6-tetramethylpiperidinyl-l-oxyl) is reduced at 37 degrees, with a half-time of about 1 hr. The reduction occurs internally following the rate-limiting transport of the label across the erythrocyte membrane. Reduction of this spin-label is greatly diminished by the specific inhibitor of anion transport, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). The rate of transport depends strongly on the transmembrane electrical potential.  相似文献   

17.
L Kragie 《Life sciences》1992,51(9):PL83-PL88
Previously, we reported potent inhibition of triiodo-L-thyronine (T3) cellular uptake into a human liver cell line (HepG2) by central and peripheral receptor specific benzodiazepine (BZ) compounds and our working hypothesis of BZ's as direct competitors for the iodothyronine transporter, displacing T3 but not acting as a substrate for transport. In this report, we list other reported uptake inhibitors and compare them to 23 benzodiazepine receptor ligands, in their potency to inhibit cellular uptake of T3. The most potent inhibitors are restricted to the benzodiazepine class. From the BZ structure-activity relationship (SAR) for inhibition, we see that the nonfused phenyl ring may be essential for activity and the strongest relationship is seen with substitution at R2' where Cl greater than F greater than H. Substitution at R4' and hydroxyl substitution at R3 enhances potency as will alkyl groups at R1 or on the imidazole group in the 1,2-annelated series. With R7 substitution, Cl is preferred over NO2 but not necessarily H when R4' = Cl; this may reflect a slightly different orientation of the molecule with large aliphatic R1 groups and/or R4' substitution. The carbonyl at R2 in the 1,4 benzodiazepine series, enhances their potency. The resultant structure-activity relationship highlights the importance of the halogen-substituted nonfused phenyl ring and seems unique relative to other described benzodiazepine sites and/or effects.  相似文献   

18.
Susceptibility and resistance of ruminal bacterial species to avoparcin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, and two new ionophore antibiotics, RO22-6924/004 and RO21-6447/009, were determined. Generally, antimicrobial compounds were inhibitory to gram-positive bacteria and those bacteria that have gram-positive-like cell wall structure. MICs ranged from 0.09 to 24.0 micrograms/ml. Gram-negative bacteria were resistant at the highest concentration tested (48.0 micrograms/ml). On the basis of their fermentation products, ruminal bacteria that produce lactic acid, butyric acid, formic acid, or hydrogen were susceptible and bacteria that produce succinic acid or ferment lactic acid were resistant to the antimicrobial compounds. Selenomonas ruminantium was the only major lactic acid-producing bacteria resistant to all the antimicrobial compounds tested. Avoparcin and tylosin appeared to be less inhibitory (MIC greater than 6.0 micrograms/ml) than the other compounds to the two major lactic acid-producing bacteria, Streptococcus bovis and Lactobacillus sp. Ionophore compounds seemed to be more inhibitory (MIC, 0.09 to 1.50 micrograms/ml) than nonionophore compounds (MIC, 0.75 to 12.0 micrograms/ml) to the major butyric acid-producing bacteria. Treponema bryantii, an anaerobic rumen spirochete, was less sensitive to virginiamycin than to the other antimicrobial compounds. Ionophore compounds were generally bacteriostatic, and nonionophore compounds were bactericidal. The specific growth rate of Bacteroides ruminicola was reduced by all the antimicrobial compounds except avoparcin. The antibacterial spectra of the feed additives were remarkably similar, and it appears that MICs may not be good indicators of the potency of the compounds in altering ruminal fermentation characteristics.  相似文献   

19.
The oligodendroglial enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), is a valuable marker for expression of oligodendroglial differentiation in glial primary cultures, and the inducibility of this enzyme by dibutyryl-3',5'-cyclic AMP (dBcAMP) appears to be limited to immature or developing oligodendroglia. To investigate the relationship between the induction of CNP and the sterol biosynthetic pathway, primary cultures of glia dissociated from the brains of newborn rats were maintained in 10% fetal calf serum (FCS) and exposed to 1 mM dBcAMP on day 7 in culture. Cultures so treated for either 48 h or 72 h demonstrated a three- to fourfold induction of CNP specific activity. The magnitude of this induction was not affected when the cholesterol content of the culture medium was reduced by greater than 95% by placing the cultures in 10% lipoprotein-poor serum rather than 10% FCS during the exposure to dBcAMP. Mevinolin (10 microM), a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of the sterol biosynthetic pathway, completely inhibited the induction of CNP by dBcAMP, while not affecting either the accumulation of cellular protein per flask or rate of protein synthesis. Simultaneous addition of mevalonate (20 mM) prevented the inhibition of the induction of CNP by mevinolin. However, simultaneous addition of low-density lipoprotein sufficient to increase the cholesterol content of the medium 80-fold failed to correct mevinolin's inhibition of the induction of CNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Susceptibility and resistance of ruminal bacterial species to avoparcin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, and two new ionophore antibiotics, RO22-6924/004 and RO21-6447/009, were determined. Generally, antimicrobial compounds were inhibitory to gram-positive bacteria and those bacteria that have gram-positive-like cell wall structure. MICs ranged from 0.09 to 24.0 micrograms/ml. Gram-negative bacteria were resistant at the highest concentration tested (48.0 micrograms/ml). On the basis of their fermentation products, ruminal bacteria that produce lactic acid, butyric acid, formic acid, or hydrogen were susceptible and bacteria that produce succinic acid or ferment lactic acid were resistant to the antimicrobial compounds. Selenomonas ruminantium was the only major lactic acid-producing bacteria resistant to all the antimicrobial compounds tested. Avoparcin and tylosin appeared to be less inhibitory (MIC greater than 6.0 micrograms/ml) than the other compounds to the two major lactic acid-producing bacteria, Streptococcus bovis and Lactobacillus sp. Ionophore compounds seemed to be more inhibitory (MIC, 0.09 to 1.50 micrograms/ml) than nonionophore compounds (MIC, 0.75 to 12.0 micrograms/ml) to the major butyric acid-producing bacteria. Treponema bryantii, an anaerobic rumen spirochete, was less sensitive to virginiamycin than to the other antimicrobial compounds. Ionophore compounds were generally bacteriostatic, and nonionophore compounds were bactericidal. The specific growth rate of Bacteroides ruminicola was reduced by all the antimicrobial compounds except avoparcin. The antibacterial spectra of the feed additives were remarkably similar, and it appears that MICs may not be good indicators of the potency of the compounds in altering ruminal fermentation characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号