首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release characteristics of flavor in boiling water and the flavor retention in the rice after cooking were investigated by using spray dried powder in encapsulated in or emulsified with d-limonene or ethyl n-hexanoate in cyclodextrin and maltodextrin, or in gum arabic and maltodextrin. The behavior of flavor release into the boiling water was well simulated by Avrami's equation. The retention of d-limonene and ethyl n-hexanoate in cooked rice was correlated in each case with the flavor amount of spray-dried powder added.  相似文献   

2.
To enhance the storage stability of essential oils such as d-limonene, a mixed powder of β-cyclodextrin and maltodextrin was used to encapsulate the liquid flavor in a powder state. In this study, powdery encapsulation of d-limonene was done by direct kneading of d-limonene with the mixed powder at low water content, using a twin screw kneader. The retention of d-limonene in the periodically sampled powder reached a maximum when the mass ratio of β-cyclodextrin to maltodextrin in the mixed powder equaled unity and the initial molar ratio of d-limonene to β-cyclodextrin was larger than unity. From X-ray diffraction of the powder, it could be guessed that the maximum retention of d-limonene might come from the adsorption of d-limonene upon maltodextrin. The equilibrium retention of d-limonene in the dry powder depended not only upon the mass ratio of β-cyclodextrin to maltodextrin in the mixed powder, but upon the initial moisture content in the powder. The equilibrium retention could be estimated well by a simple calculation.  相似文献   

3.
Powdery encapsulation of shiitake flavors, extracted from dried shiitake, was investigated by spray drying. Flavor retention increased with an increase in drying air temperature and solid content, and decreased with an increase in dextrose equivalents of maltodextrin. A heat-treatment of the extract liquid made the lenthionine concentration increase, but did not influence the concentrations of the other flavors. The formation of lenthionine with heat-treatment could be described by the consecutive unimolecular-type first order reaction. Lenthionine content in a spray-dried powder prepared with the heated extracted liquid significantly increased. alpha-Cyclodextrin was the most suitable encapsulant of alpha-, beta-, and gamma-cyclodextrins to prepare the spray-dried powder, including lenthionine. The flavor retentions were markedly increased by using of alpha-cyclodextrin and maltodextrin in combination as an encapsulant.  相似文献   

4.
Complex formation of poorly water soluble organic compounds with cyclodextrin (CD) is quite difficult in an aqueous cyclodextrin system. Formation of the inclusion complex of d-limonene, phenyl ethanol, acetophenone, or menthol was investigated in a slurry form of α-, β-, or γ-CD in organic solvents or alcohol under anhydrous conditions. Ethanol and methanol were found to be good solvents for this method. The use of ethanol as the solvent was investigated in greater detail. There existed an optimal amount of ethanol for the maximum inclusion of d-limonene as the guest compound. However, an excess of ethanol inhibited the inclusion. An adsorption model of alcohol on CD, analogous to the substrate inhibition model of enzyme kinetics, could correlate the inclusion ratio with the amount of alcohol added to CD.  相似文献   

5.
Pullulan microspheres containing cyclodextrin (CyD) were obtained by chemical crosslinking with epichlorohydrin of an alkaline solution of pullulan (Pul) and alpha-, beta- or gamma-CyD. The amount of alpha-, beta- and gamma-CyD in microspheres was 120, 156, and 138 micromol/g, respectively, as determined from the percentage of iodine incorporated in the hydrophobic cavity of CyD's. Microspheres were packed in a glass column and the liquid chromatographic behaviour by isocratic elution of different drugs or typical organic compounds (TOC), taken as model drugs, was investigated. The increase of the retention volume (V(R)) of each compound, depending on the interaction(s) between CyD's cavity and the considered molecule, is characterized by a broadening of the peaks. The interaction coefficient K, corresponding to the ratio between the V(R) value of each tested molecule on Pul-alpha-, Pul-beta- and Pul-gamma-CyD active stationary phase and the V(R) value of benzoic acid on St/maltodextrin neutral stationary phase, was determined. According to K values, the accurate prediction can be done on the potential drugs to be conditioned in suitable CyD cavity. Values of K allow to anticipate the release profiles of drugs considered.  相似文献   

6.
Mentholated cigarettes gained popularity in the 1950s and were often marketed as “healthy” cigarettes, attributable to their pleasurable mint flavor and cooling sensation in the mouth, lungs, and throat. While it is clear that nicotine is the primary psychoactive component in tobacco cigarettes, recent work has suggested that menthol may also play a role in exacerbating smoking behavior, despite original health claims. Recent evidence highlights four distinct biological mechanisms that can alter smoking behavior: 1) menthol acts to reduce the initially aversive experiences associated with tobacco smoking; 2) menthol can serve as a highly reinforcing sensory cue when associated with nicotine and promote smoking behavior; 3) menthol''s actions on nicotinic acetylcholine receptors may change the reinforcing value of nicotine; and 4) menthol can alter nicotine metabolism, thus increasing nicotine bioavailability. The purpose of this review is to highlight and evaluate potential biological mechanisms by which menthol can alter smoking behavior.  相似文献   

7.
A quantitative method for measuring simultaneously the flavor and water contents in model spray-dried flavor delivery systems was developed using spectroscopic techniques and chemometrics. Nine encapsulated systems were prepared, consisting of a solid carrier (maltodextrin and gum arabic) and varying the amounts of water and flavor. The model flavors used in this work were a hydrophobic (limonene) and a more hydrophilic (2,5-dimethylpyrazine) single components. Near-infrared (NIR) and low-field time-domain nuclear magnetic resonance (low field TD-NMR) data were acquired on each system and analyzed using multivariate chemometric techniques to develop optimal prediction models. Partial least squares regression models showed good predictive ability, with coefficients of determination (R2) between 0.81 and 1.00 and low root mean square error of cross-validation values compared to the range of concentrations. The predictive ability of the chemometric models computed using the NIR spectra improved significantly when data were pre-processed using multiplicative signal correction. The development of good prediction models (i.e., robust models resulting in accurate predictions for water and flavor content) from the NMR relaxation data spectra was successful only for the hydrophobic limonene systems, yielding prediction models whose performance was better than the models obtained using the NIR data. Overall, NIR spectroscopy and NMR relaxometry were identified as complementary techniques rather than competitive methods in the characterization of encapsulated flavor systems.  相似文献   

8.
The genotoxic potential of mainstream whole smoke (MWS) from cigarettes which heat tobacco (TEST) was compared to the genotoxic potential of MWS from a cigarette which burns tobacco (REFERENCE). MWS was collected from a University of Kentucky 1R4F cigarette (REFERENCE) and two, TEST cigarettes, one with regular flavor and the other with menthol flavor. All cigarettes were smoked on a smoking machine and the particulate phase was collected on Cambridge filter pads. The vapor phase, which passed through the pad, was bubbled into a dimethyl sulfoxide (DMSO) trap. The filter pad was extracted with the DMSO in the trap and additional DMSO to obtain MWS. MWS representing an identical number of cigarettes was tested to make a per-cigarette comparison of their genotoxic potential. REFERENCE MWS was mutagenic and cytotoxic in the Ames assay in the presence of metabolic activation while it was cytotoxic but not mutagenic in the absence of metabolic activation. Statistically significant increases in frequency of both sister-chromatid exchanges and chromosomal aberrations were observed in Chinese hamster ovary cells exposed to REFERENCE MWS with and without metabolic activation. MWS from the TEST cigarettes, with either regular or menthol flavor, was neither cytotoxic nor mutagenic in any of these assays. In summary, MWS from the 2 TEST cigarettes was neither genotoxic nor cytotoxic under conditions where MWS from the REFERENCE cigarettes was genotoxic and/or cytotoxic in a concentration-dependent manner.  相似文献   

9.
Cyclodextrin glycosyltransferase (EC 2.4.1.19, CGTase) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. Addition of small amounts (10% v/v) of polar organic solvents can affect both the overall production yield and the type of cyclodextrin produced from a maltodextrin substrate under simulated industrial process conditions. Using CGTase from Thermoanaerobacter sp. all solvents produced an increase in cyclodextrin yield when compared with a control, the greatest increase being obtained with addition of ethanol (26%). In addition product selectivity was affected by the nature of the organic solvent used: beta-cyclodextrin was favoured in the absence of any solvent and on the addition of dimethylsulphoxide, t-butanol and dimethylformanide while alpha-cyclodextrin was favoured by addition of acetonitrile, ethanol and tetrahydrofuran. With CGTase from Bacillus circulans strain 251 relatively smaller increases in overall cyclodextrin production were achieved (between 5-10%). Addition of t-butanol to a B. circulans catalysed reaction however did produce the largest selectivity for beta-cyclodextrin of any solvent-enzyme combination (82%). The effect of solvent addition was shown not to be related to the product inhibition of CGTase, but may be related to reduced competition from the intermolecular transglycosylation reaction that causes degradation of cyclodextrin products. This rate of this reaction was shown to be dependent on the nature of the organic solvent used.  相似文献   

10.
In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of l-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2 % higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at ?3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.  相似文献   

11.
The effect of composition and origin of maltodextrins on the retention of 38 components in a mixture of volatile organic substances (odorants) during 6-month storage was studied by means of capillary gas-liquid chromatography. The retention of esters increased with an increase in their molecular weight. The retention of lactones, phenols, linalool, menthone, and damascone was 75-85%. Storage of aldehydes was accompanied by oxidation, and the retention of these substances did not exceed 55%. The retention of odorants increased with a decrease in the molecular weight of maltodextrins. The maximum retention was typical of maltodextrin from amylopectin starch not containing amylose.  相似文献   

12.
The effect of composition and origin of maltodextrins on the retention of 38 components in a mixture of volatile organic substances (odorants) during 6-month storage was studied by means of capillary gas-liquid chromatography. The retention of esters increased with an increase in their molecular weight. The retention of lactones, phenols, linalool, menthone, and damascone was 75–85%. Storage of aldehydes was accompanied by oxidation, and the retention of these substances did not exceed 55%. The retention of odorants increased with a decrease in the molecular weight of maltodextrins. The maximum retention was typical of maltodextrin from amylopectin starch not containing amylose.  相似文献   

13.
A new and simple method of training intact cockroaches was designed. (1) Cockroaches were maintained before and during the experiment with a high motivation to look for sugar. They were kept in a chamber with water and yeast extract ad libitum but without any sugar. (2) Cockroaches were individually trained to associate two artificial scent signals, i.e. menthol and vanilla, with sugar and salt solutions. Discriminatory learning performance was measured by testing the scent preference before and after training. Care was taken to exclude other than olfactory cues in the discriminatory paradigm. (3) Cockroaches exhibited a spontaneous initial preference for vanilla over menthol. This preference could be modified by training. The insect showed fast learning and long retention. One training trial was enough to reverse the initial preference with a significant retention after 7 days. Reversal of trained preference was accomplished by retraining. (4) The method provides an opportunity to study sensory performance and memory consolidation in cockroaches.  相似文献   

14.
  1. When growing with cyclodextrins, Klebsiella pneumoniae M 5 al produces extracellular cyclodextrin glucanotransferase in amounts comparable to those obtained during the growth with potato starch.
  2. Intracellular cyclodextrin glucanotransferase-activity was demonstrated to be present in the homogenates of cells grown with cyclodextrins. In addition, an amylomaltase-like enzyme and the maltodextrin phosphorylase could be pointed out. The cyclodextrins are metabolized to glucose-1-phosphate and glucose by the concerted actions of these three enzymes. paraGlucose-1-phosphate is liberated from cyclohexaamylose by the actions of purified cyclodextrin glucanotransferase and purified maltodextrin phosphorylase. The liberation of the sugar phosphate is increased fivefold by addition of glucose as an acceptor. This sugar, however, retards the formation of glucose-1-phosphate from the cyclic compound by the enzymes of the cell extract: In the presence of glucose the amylomaltase is incapable of synthesizing substrates for the phosphorylase from maltose. This experimental result clearly demonstrates that the amylomaltase is involved in the disproportionation of maltosaccharides arising from the cyclodextrins.
  3. A NADP+-specific glucose dehydrogenase was demonstrated to be present in the cell extracts. This enzyme, which is activated by ADP, may control the energy-depending pool of free glucose. Glucose originates from the disproportionation of maltosaccharides catalyzed by the glucanotransferases.
  4. A glucose-1-phosphate-hydrolysing phosphatase, which is shown to be present in the cell extract, seems to be without physiological significance for the metabolism of the cyclodextrins.
  5. Preliminary permeation studies make it probable that the cyclodextrins are transported into the cells as such and degraded only within the cells.
  6. A scheme for the metabolism of cyclodextrins in Klebsiella pneumoniae M 5 al is proposed.
  相似文献   

15.
采用单因素优化法对环糊精葡萄糖苷转移酶(CGTase)合成糖基抗坏血酸(AA-2G)条件进行优化,AA-2G的产量为2.76 g/L,比未优化前0.46g/L提高了500%。再采用响应面法对AA-2G合成条件进行优化。由Plackett-Burman法筛选出三个主要因素为:pH、V_C和麦芽糊精浓度;由最陡爬坡实验得出最佳响应面区域;最后由Box-Behnken实验,得到最优条件为:pH 5.51,V_C36.16g/L,麦芽糊精28.54 g/L,转化时间24 h,温度37℃。在此条件下,AA-2G的理论产量为3.15 g/L,通过验证实验,得出AA-2G的产量为3.13 g/L,与预测的理论值接近,比单因素优化的结果(2.76g/L)提高了14%。  相似文献   

16.
Novel glycosides of piceid (3,4′-5-trihydroxy stilbene 3-O-β-d-glucoside) were produced by the transglycosylation reactions of cyclodextrin glucanotransferase (CGTase) from Bacillus macerans, with piceid (PicG1) and maltodextrin as the acceptor and donor substrates, respectively. The reactions were performed at 40 °C with 2.56 mM piceid (0.1% w/v) and maltodextrin (5% w/v) in 0.02 M citrate phosphate buffer, pH 6.0 containing 5% (v/v) methanol for 6 h. Glucose, maltose, sucrose, maltotriose and α-cyclodextrin (α-CD) were also used to analyze their ability to function as donor substrates, for the glycosylation of piceid. Among the different donor substrates used, the maximum transfer efficiency (TE) of glycosylation of piceid was observed for α-cyclodextrin (78.9%) followed by maltodextrin (72.1%). The partially purified piceid glycoside products (PicG2 and PicG3) were identified by mass spectrometry.  相似文献   

17.
The pseudooligosaccharide acarbose is a potent inhibitor of amylases, glucosidases, and cyclodextrin glycosyltransferase and is clinically used for the treatment of so-called type II or insulin-independent diabetes. The compound consists of an unsaturated aminocyclitol, a deoxyhexose, and a maltose. The unsaturated aminocyclitol moiety (also called valienamine) is primarily responsible for the inhibition of glucosidases. Due to its structural similarity to maltotetraose, we have investigated whether acarbose is recognized as a substrate by the maltose/maltodextrin system of Escherichia coli. Acarbose at millimolar concentrations specifically affected the growth of E. coli K-12 on maltose as the sole source of carbon and energy. Uptake of radiolabeled maltose was competitively inhibited by acarbose, with a Ki of 1.1 microM. Maltose-grown cells transported radiolabeled acarbose, indicating that the compound is recognized as a substrate. Studying the interaction of acarbose with purified maltoporin in black lipid membranes revealed that the kinetics of acarbose binding to LamB is asymmetric. The on-rate of acarbose is approximately 30 times lower when the molecule enters the pore from the extracellular side than when it enters from the periplasmic side. Acarbose could not be utilized as a carbon source since the compound alone was not a substrate of amylomaltase (MalQ) and was only poorly attacked by maltodextrin glucosidase (MalZ).  相似文献   

18.
An additional amylase besides the typical alpha-amylase was detected in the cytoplasm of Bacillus subtilis SUH4-2, an isolate from Korean soil. The corresponding gene encoded a maltogenic amylase, which hydrolyzed cyclodextrin or starch to maltose and glucose; pullulan to panose; acarbose to glucose and acarviosine-glucose. Maltogenic amylase of B. subtilis SUH4-2 transferred sugar molecules to form various branched oligosaccharides upon the hydrolysis of substrates. The enzyme existed in a monomer-dimer equilibrium with a molar ratio of 3:2 in 50 mM KH(2)PO(4)-NaOH buffer (pH 7.0). The maltogenic amylase is most likely to be associated with carbohydrate metabolism in the cytoplasm, since the nucleotide sequence of the gene was highly homologous to the yvdF gene of B. subtilis 168, which is located in a gene cluster involved in maltose/maltodextrin utilization.  相似文献   

19.
The behavioural responses of parasitic wasps to chemical cues from their hosts and host plants are known to be affected by genetic and environmental components. In a previous study of the codling moth ectoparasitoid Hyssopus pallidus, we found that the response of adult parasitoids to the frass of their host caterpillars depended on a learning process involving plant cues. In the present study, we investigated how and when learning takes place. A series of experiments was conducted involving exposure of parasitoids to fruit cues at different developmental stages. While parasitoids were not able to learn the fruit cues in the adult stage, exposure to fruit odour at early preimaginal stages significantly increased the adult response to frass from fruit-fed caterpillars. The olfactory memory persisted through metamorphosis, with a retention time of 14 days. Preimaginal learning was not confined to fruit cues but was also demonstrated for a host- and fruit-independent cue, menthol. Parasitoids exposed to menthol odour at the egg and larval stages no longer showed negative responses as adults. Sensitization to fruit cues and habituation to menthol are considered to be the mechanisms involved. This study provides evidence of true preimaginal learning of olfactory cues in a parasitic wasp.  相似文献   

20.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号