首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testis is one of the most sensitive organs to ionizing radiation. The present study was designed to unravel the possible role of antioxidant proteins, peroxiredoxin I and II (Prx I and II) in the testis. Our results show that Prx I and II are constitutively expressed in the testis and their expression levels are decreased to some extent as the testis develops. Interestingly, immunohistochemical analysis revealed a preferential expression of Prx I and II in Leydig and Sertoli cells, respectively. Neither Prx I nor Prx II expression was obvious in the testicular germ cells including spermatogonia and spermatocytes. Ionizing radiation exerted oxidative stress on the testis and induced apoptosis primarily in the germ cells. When the irradiated testis was examined, the Prx system was found to be transiently up-regulated. Taken together, we suggest that the relative radiation-resistance of Leydig and Sertoli cells could be attributed in part to the antioxidant function of the Prx system in these cells.  相似文献   

2.
The signal for somatic sex determination in mammals, Caenorhabditis elegans and Drosophila melanogaster is chromosomal, but the overall mechanisms do not appear to be conserved between the phyla. However it has been found quite recently that the C. elegans sex-determining gene Mab-3 contains a domain highly homologous to the Drosophila sex-determining gene doublesex (dsx) and shares a similar role. These data suggest that at least some aspects of the regulation of sex determination might be conserved. In humans, a doublesex-related gene (DMRT1) was identified at less than 30 kb from the critical region for sex reversal on chromosome 9p24 (TD9). In order to get insights into the role of DMRT1 in sex determination/differentiation, we have isolated DMRT1 mouse homologue (Dmrt1) and analysed its expression pattern. The gene is expressed in the genital ridges of both sexes during the sex-determining switch and it shows male/female dimorphism at late stages of sex differentiation.  相似文献   

3.
The localization of albumin and transferrin was examined immunohistochemically in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. These proteins appeared as early as the 13th day of gestation in migrating primordial germ cells before Sertoli cell differentiation. In the fetal testis, strong immunoreactivity was only detected in the gonocytes. In the prepubertal testis, spermatogonia, primary spermatocytes, and some Sertoli cells accumulate albumin and transferrin. At puberty, different patterns of immunostaining of the germ cells were observed at the various stages of the cycle of the seminiferous epithelium. Diplotene spermatocytes at stage XIII, spermatocytes in division at stage XIV, and round spermatids at stages IV–VIII showed maximal staining. Labeling was evident in the cytoplasm of adult Sertoli cells. Albumin and transferrin staining patterns paralleled each other during ontogenesis.  相似文献   

4.
Male-specific migration of cells from the mesonephric kidney into the embryonic gonad is required for testis formation in the mouse. It is unknown, however, whether this process is specific to the mouse embryo or whether it is a fundamental characteristic of testis formation in other vertebrates. The signalling molecule/s underlying the process are also unclear. It has previously been speculated that male-specific cell migration might be limited to mammals. Here, we report that male-specific cell migration is conserved between mammals (mouse) and birds (quail-chicken) and that it involves proper PDGF signalling in both groups. Interspecific co-cultures of embryonic quail mesonephric kidneys together with embryonic chicken gonads showed that quail cells migrated specifically into male chicken gonads at the time of sexual differentiation. The migration process is therefore conserved in birds. Furthermore, this migration involves a conserved signalling pathway/s. When GFP-labelled embryonic mouse mesonephric kidneys were cultured together with embryonic chicken gonads, GFP+ mouse cells migrated specifically into male chicken gonads and not female gonads. The immigrating mouse cells contributed to the interstitial cell population of the developing chicken testis, with most cells expressing the endothelial cell marker, PECAM. The signalling molecule/s released from the embryonic male chicken gonad is therefore recognised by both embryonic quail and mouse mesonephric cells. A candidate signalling molecule mediating the male-specific cell migration is PDGF. We found that PDGF-A and PDGF receptor-alpha are both up-regulated male-specifically in embryonic chicken and mouse gonads. PDGF signalling involves the phosphotidylinositol 3-kinase (PIK3) pathway, an intracellular pathway proposed to be important for mesonephric cell migration in the mammalian gonad. We found that a component of this pathway, PI3KC2alpha, is expressed male-specifically in developing embryonic chicken gonads at the time of sexual differentiation. Treatment of organ cultures with the selective PDGF receptor signalling inhibitor, AG1296 (tyrphostin), blocked or impaired mesonephric cell migration in both the mammalian and avian systems. Taken together, these studies indicate that a key cellular event in gonadal sex differentiation is conserved among higher vertebrates, that it involves PDGF signalling, and that in mammals is an indirect effect of Sry expression.  相似文献   

5.
《遗传学报》2023,50(2):99-107
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than 600 million people worldwide. Several organs including lung, intestine, and brain are infected by SARS-CoV-2. It has been reported that SARS-CoV-2 receptor angiotensin-converting enzyme-2 (ACE2) is expressed in human testis. However, whether testis is also affected by SARS-CoV-2 is still unclear. In this study, we generate a human ACE2 (hACE2) transgenic mouse model in which the expression of hACE2 gene is regulated by hACE2 promoter. Sertoli and Leydig cells from hACE2 transgenic mice can be infected by SARS-CoV-2 pseudovirus in vitro, and severe pathological changes are observed after injecting the SARS-CoV-2 pseudovirus into the seminiferous tubules. Further studies reveal that Sertoli and Leydig cells from hACE2 transgenic mice are also infected by authentic SARS-CoV-2 virus in vitro. After testis interstitium injection, authentic SARS-CoV-2 viruses are first disseminated to the interstitial cells, and then detected inside the seminiferous tubules which in turn cause germ cell loss and disruption of seminiferous tubules. Our study demonstrates that testis is most likely a target of SARS-CoV-2 virus. Attention should be paid to the reproductive function in SARS-CoV-2 patients.  相似文献   

6.
Proper cell fate determination in mammalian gonads is critical for the establishment of sexual identity. The Hedgehog (Hh) pathway has been implicated in cell fate decision for various organs, including gonads. Desert Hedgehog (Dhh), one of the three mammalian Hh genes, has been implicated with other genes in the establishment of mouse fetal Leydig cells. To investigate whether Hh alone is sufficient to induce fetal Leydig cell differentiation, we ectopically activated the Hh pathway in Steroidogenic factor 1 (SF1)-positive somatic cell precursors of fetal ovaries. Hh activation transformed SF1-positive somatic ovarian cells into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and insulin-like growth factor 3 (INLS3) that cause virilization of female embryos and ovarian descent. However, the female reproductive system remained intact, indicating a typical example of female pseudohermaphroditism. The appearance of fetal Leydig cells was a direct consequence of Hh activation as evident by the absence of other testicular components in the affected ovary. This study provides not only insights into mechanisms of cell lineage specification in gonads, but also a model to understand defects in sexual differentiation.  相似文献   

7.
Summary The present investigation is concerned with the morphological changes observed in human testicular tissue following prolonged estrogen administration. Testicular material obtained from 11 transsexual patients who had been submitted to long-term estrogen treatment prior to sex-reversal surgery was studied by means of light- and electron microscopy.The testes of all patients examined present a more or less uniform appearance: There are narrow seminiferous cords surrounded by an extensively thickened lamina propria. They contain Sertoli cells and spermatogonia exclusively. There is no evidence of typical Leydig cells.The persisting spermatogonia show the characteristic features of pale type-A spermatogonia, whereas dark type-A spermatogonia are almost completely eliminated from the epithelium. In view of the fact that spermatogonia that survived radiotherapy and treatment with various noxious agents have recently been regarded as the stem cells of the human testis, it is suggested that also the majority of those spermatogonial types that are less sensitive to disturbances of the endocrine balance may consist of stem cells. The present results, therefore, corroborate the concept that the stem cells of the human testis may be derived from pale type-A spermatogonia or the variants of this cell type.Sertoli cells display two types of ovoid nuclei. In contrast to untreated material the nuclei lie adjacent to the basal lamina, and organelles and telolysosomes are confined to the apical cytoplasm. The apico-basal differentiation of mature cells, therefore, is not observed. Moreover, typical organelles and inclusions of mature cells are absent, as are the junctional specializations. Thus, Sertoli cells have transformed into immature cells, resembling precursors prior to puberty.Fibroblast-like cells in the interstitial tissue, which display strongly lobulated nuclei, a well-developed smooth endoplasmic reticulum, lipid droplets, and numerous inclusions are assumed to represent dedifferentiated Leydig cells.Since after estrogen treatment serum testosterone and gonadotropin levels are known to be reduced, it appears that the morphological changes correlate well with the endocrine status.  相似文献   

8.
9.
A rare intratubular gonadal stromal tumor was present in the testis of a 45-year-old man who was admitted to our hospital with the chief complaint of gradual enlargement of the left testis. Tumoral markers were negative and no extension was observed. The tumor comprised an intratubular mixture of two types of tumor cells with intercellular junctions: the predominant tumor cells were consistent with a Sertoli cell origin and cells comprising the minor population consistent with a Leydig cell origin. The patient is disease free after 6-month follow-up. The case is considered to be a testicular mixed tubular Sertoli-Leydig cell tumor. It highlights a rare type of primary tumor of the testis that features a good prognosis.  相似文献   

10.
Summary Testicular cells were prepared from neonatal (48 h after birth) mice by enzymatic dissociation and were cultured in serum-supplemented medium to investigate cell proliferation in vitro. The cultured cells were composed mostly of germ cells, identified by immunocytochemistry using a germ cell-specific antiserum, and supporting (immature Sertoli) cells. After 36 h in culture, the cells were pulse-labeled with 3H-thymidine and fixed at 2-h intervals for 36 h after labeling. Numbers of labeled and unlabeled metaphases of germ cells and supporting cells were counted, and percent labeled metaphases for both cell types were determined for cell-cycle analysis. The results indicate that germ cells, as well as supporting cells, incorporate 3H-thymidine and progress through the cell cycle in vitro. From the curve of the percent labeled metaphases for the supporting cells, the total cell cycle and intervals of DNA synthesis were estimated to be 27.2 h and 13.2 h, respectively.  相似文献   

11.
12.
The present study investigated the effects of aging in the testis interstitium in Sprague Dawley rats. Rats of 3, 6 and 24 months of age were used. Testes of rats (n = 5) were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in eponaraldite. Using 1 μm sections stained with methylene blue, qualitative and quantitative morphological studies were performed. Purified Leydig cell preparations, obtained by collagenase digestion followed by elutriation and density gradient centrifugation, were used to determine luteinizing hormone (LH; 100 ng/ml) stimulated testosterone secretory capacity per Leydig cell in vitro. Testosterone levels in the incubation medium, and testosterone and luteinizing hormone levels in serum of these three groups of rats were determined via radioimmunoassay. Morphological studies revealed that Leydig cells were more abundant in the testis interstitium at 6 and 24 months when compared to 3 months. Moreover, collagen fiber bundles were more frequently observed in the testis interstitium at older ages. Blood vessels of the testis interstitium in 24-month-old rats frequently showed partial and complete occlusion of their lumen and thickening of vessel walls. This feature was also present at 6 months, but less frequently. The results of the sterological studies revealed that the volumes of seminiferous tubules, interstitium and Leydig cells per testis was significantly higher (P < 0.05), at 6 and 24 months of age than those at 3 months. Moreover, volume of macrophages per testis was observed to be significantly higher (P < 0.05) at 6 months when compared to 3 and 24 months, and volume of connective tissue cells per testis was observed to be significantly lower (P < 0.05) at 6 and 24 months when compared to 3 months of age. No significant difference (P > 0.05) was observed for the volume of lymphatic space per testis in the three age groups studied. Volume of interstitial blood vessels per testis was not significantly different at 3 and 6 months of age, but a significantly greater (P < 0.05) volume was observed at 24 months. However, at 6 and 24 months, only 71% and 31% of the total blood vessel volumes respectively had completely open lumen in them; the rest of the blood vessels were either partially (12.5% at 6 months and 17% at 24 months) or completely (16.5% at 6 months and 52% at 24 months) occluded. The number of Leydig cells per testis was doubled at 6 and 24 months of age compared to 3 months. The average volume of a Leydig cell was not significantly different between 3 and 6 months of age, however, at 24 months a significantly lower (P < 0.05) value was observed. LH stimulated testosterone secretory capacity per Leydig cell in vitro was reduced by 50% at 6 months of age compared to 3 months; a further significant (P < 0.05) reduction was observed at 24 months. Serum testosterone and LH levels were not significantly different between 3 and 6 months of age but at 24 months a significantly lower (P < 0.05) value was observed for both of these hormones.In summary, the present study demonstrated many changes in the components of the testis interstitium in the aged Sprague Dawley rat. Modifications in the blood vessels and the occurrence of abundant collagen fibers in the interstitial space could possibly contribute to the reduced testosterone secretory capacity per Leydig cell with advancing in age. The observed Leydig cell hyperplasia could be suggested as a compensatory effort to maintain the normal androgen status of the aged rat, which is rather successful at 6 months but unsuccessful at 24 months. This investigation further revealed that these characteristic changes in the aged testis interstitium at 24 months are also present to some extent at 6 months of age in Sprague Dawley rats, suggesting that aging of the testis in this strain of rats commences early in life.  相似文献   

13.
14.
From July to March, the testis of the spring‐spawning freshwater goby Padogobius martensi is characterized by spermatogonial proliferation. A close correlation exists among type of proliferating spermatogonia, gonado‐somatic (IG) profiles and morphological and functional variations of the Leydig cells. The IG reach their minimal levels by the end of summer and increase progressively but modestly during autumn and winter. Declining IG levels are associated with proliferation of primary spermatogonia only, whereas increasing IG levels are associated with predominant proliferation of secondary spermatogonia. Minimal IG levels are reached when the germinal epithelium is formed by a continuum of primary spermatogonia and associated Sertoli cells. The proliferation of secondary spermatogonia begins only at this time. Spermatogenesis in autumn occurs when spermatogonial cysts contain at the most 16 cells and it rarely results in the maturation of several cysts so that the amount of sperm cells produced is either negligible or scarce. A number of degenerating cells are usually present within the spermatogonial and meiotic cysts. Leydig cells are the unique cells that display features of steroidogenic cells: mitochondria with tubular cristae, extensive smooth endoplasmic reticulum (SER), 3β‐hydroxysteroid dehydrogenase (3β‐HSD) and glucose‐6‐phosphate dehydrogenase (G6PD) activity and sudanophilia. Light and dark Leydig cell varieties are always present. During regression, Leydig cells undergo a marked decrease in SER amount, mitochondrial sizes and number of mitochondrial cristae. In parallel, the 3β‐HSD and G6PD activities and sudanophilia decrease progressively until they become undetectable by the end of regression. In autumn, mitochondria increase in size, reaching sizes similar to those observed at the end of the spawning season in the light cells, but not in the dark cells. The SER, on the contrary, undergoes a modest and irregular increase only in a part of the Leydig cells, mostly of the light type. In parallel, the 3β‐HSD and G6PD activities increase until they become moderately intense by the end of autumn. At the end of winter, the SER is extensive and regularly dilated in both Leydig cell types, whereas mitochondria still have sizes similar to those observed in December. The 3β‐HSD and G6PD activities are strong and sudanophilia is again detectable. Sertoli cells undergo changes in shape and position in relation to the proliferation of primary spermatogonia and the development of cysts. A junction modulation occurs in association with these changes. Sertoli cells also undergo changes indicative of a decrease in activity immediately after spawning (loss of mitochondrial cristae and clarification of the mitochondrial matrix) and of an increase in activity by the end of the regressing phase (darkening of the mitochondrial matrix and increase in mitochondrial cristae, rough endoplasmic reticulum (RER) and free ribosomes). In addition, they are involved in the phagocytosis of degenerating germ cells at all stages of their development. Macrophages are found in the testis interstitium only, where they are usually adjacent to Leydig cells, myoid cells and blood capillaries and do not participate in the phagocytosis of degenerating germ cells. Myoid cells do not undergo ultrastructural changes except for an increase in the amount of heterochromatin by the end of spawning. The meaning of the autumnal spermatogenic wave and the relationships between the development of the germinal epithelium and the changes of the Leydig and Sertoli cells are discussed.  相似文献   

15.
Cell proliferation has been shown to have multiple functions in development and pattern formation, including roles in growth, morphogenesis, and gene expression. Previously, we determined that the earliest known morphological event downstream of the male sex determining gene, Sry, is the induction of proliferation. In this study, we used proliferation inhibitors to block cell division during early gonad development, at stages before the XY gonad has committed to the testis pathway. Using the expression of sex-specific genes and the formation of testis morphology as markers of testis determination, we found that proliferation within a specific 8-h window was critical for the establishment of the male pathway and the formation of the testis. Inhibition of proliferation before or after this critical period led to smaller gonads, but did not block testis formation. The critical period of proliferation coincides with the initiation of Sry expression and is essential for the differentiation of Sertoli cells, suggesting that proliferation is a vital component of the initiation of the male pathway by Sry. We believe these studies suggest that proliferation is involved not only in the elaboration of organ pattern, but also in the choice between patterns (male and female) in the bipotential gonad.  相似文献   

16.
17.
The signal for somatic sex determination in mammals, Caenorhabditis elegans and Drosophila melanogaster is chromosomal, but the overall mechanisms do not appear to be conserved between the phyla. However it has been found quite recently that the C. elegans sex-determining gene Mab-3 contains a domain highly homologous to the Drosophila sex-determining gene doublesex (dsx) and shares a similar role. These data suggest that at least some aspects of the regulation of sex determination might be conserved. In humans, a doublesex-related gene (DMRT1) was identified at less than 30 kb from the critical region for sex reversal on chromosome 9p24 (TD9). In order to get insights into the role of DMRT1 in sex determination/differentiation, we have isolated DMRT1 mouse homologue (Dmrt1) and analysed its expression pattern. The gene is expressed in the genital ridges of both sexes during the sex-determining switch and it shows male/female dimorphism at late stages of sex differentiation.  相似文献   

18.
An ultrastructural investigation revealed the presence of true Leydig cells in the testis of sexually mature specimens of Torpedo marmorata. They showed the typical organization of steroid-hormone-producing cells, which, however, changed as spermatocysts approached maturity. In fact, they appeared as active cells among spermatocysts engaged in spermatogenesis, while in regions where spermiation occurred, they progressively regressed resuming the fibroblastic organization typically present in the testis of immature specimens. Such observations strongly suggest that these cells might be engaged in steroidogenesis and actively control spermatogenesis. Sertoli cells, too, appeared to play a role in spermatogenesis control, since, like Leydig cells, they showed the typical aspect of steroidogenic cells. In addition, the presence of gap junctions between Sertoli cells suggests that their activity might be coordinated. After sperm release, most Sertoli cells were modified and, finally, degenerated, but few of them changed into round cells (cytoplasts) or round cell remnants, which continued their steroidogenic activity within the spermatocyst and the genital duct lumen. From the present observations, it can be reasonably concluded that, in T. marmorata, spermatogenesis depends on both Leydig and Sertoli cells, and, as postulated by Callard (1991), in cartilaginous fish, the function of the Leydig cells as producers of steroids might be more recent and subsequent to that of Sertoli cells. In this regard, it is noteworthy that, in immature males, when Leydig cells showed a fibroblastic organization, Sertoli cells already displayed the typical organization of a steroidogenic cell.  相似文献   

19.
20.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号