首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a close association between hyperglycemia and increased risk of mortality after acute myocardial infarction (AMI). However, whether acute hyperglycemia exacerbates myocardial ischemia/reperfusion (MI/R) injury remains unclear. We observed the effects of acute hyperglycemia on MI/R injury and on the cardioprotective effect of glucose-insulin-potassium (GIK). Male rats were subjected to 30 min of myocardial ischemia and 6 h of reperfusion. Rats were randomly received one of the following treatments (at 4 ml.kg(-1).h(-1) iv): Vehicle, GIK (GIK during reperfusion; glucose: 200g/l, insulin: 60 U/l, KCL: 60 mmol/l), HG (high glucose during ischemia; glucose:500 g/l), GIK + HG (HG during I and GIK during R) or GIK + wortmannin (GIK during R and wortmannin 15 min before R). Blood glucose, plasma insulin concentration and left ventricular pressure (LVP) were monitored throughout the experiments. Hyperglycemia during ischemia not only significantly increased myocardial apoptosis (23.6 +/- 1.7% vs. 18.8 +/- 1.4%, P < 0.05 vs. vehicle), increased infarct size (IS) (45.6 +/- 3.0% vs. 37.6 +/- 2.0%, P < 0.05 vs. vehicle), decreased Akt and GSK-3beta phosphorylations (0.5 +/- 0.2 and 0.6 +/- 0.1% fold of vehicle, respectively, P < 0.05 vs. vehicle) following MI/R, but almost completely blocked the cardioprotective effect afforded by GIK, as evidenced by significantly increased apoptotic index (19.1 +/- 2.0 vs. 10.3 +/- 1.2%, P < 0.01 vs. GIK), increased myocardial IS (39.2 +/- 2.8 vs. 27.2 +/- 2.1%, P < 0.01 vs. GIK), decreased Akt phosphorylation (1.1 +/- 0.1 vs. 1.7 +/- 0.2%, P < 0.01 vs. GIK) and GSK-3beta phosphorylation (1.4 +/- 0.2 vs. 2.3 +/- 0.2%, P < 0.05 vs. GIK). Hyperglycemia significantly exacerbates MI/R injury and blocks the cardioprotective effect afforded by GIK, which is, at least in part, due to hyperglycemia-induced decrease of myocardial Akt activation.  相似文献   

2.
OBJECTIVE: To study the effects of glucose-insulin-potassium (GIK) cocktail on cardiac myocyte apoptosis and cardiac functional recovery following myocardial ischemia/reperfusion (MI/R), and to further determine the role of insulin in the GIK-induced cardioprotective effect in vivo . METHODS: Forty eight male rabbits were subjected to 40 min MI followed by R for 3 h and were randomly received one of the following treatments: saline, GIK (glucose: 150 g/L, insulin: 60 U/L and KCl: 80 mmol/L), or insulin (n = 16 in each group) at 1 ml x kg(-1) x h(-1), beginning 30 min before MI and continuing throughout the 3 h-reperfusion. Blood glucose, electrolytes, arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the experiment. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activity were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (both DNA laddering and TUNEL analysis) were determined in a blinded manner. RESULTS: MI/R caused significant cardiac dysfunction and myocardial apoptosis (both strong DNA ladder formation and TUNEL-positive staining). Compared with vehicle, GIK-treated rabbits showed protection against MI/R as evidenced by reduced myocardial infarction (19.7% +/- 2.6% vs . 26.8% +/- 3.3% of vehicle, n = 10, P < 0.05), marked decrease in DNA fragmentation and apoptotic index (11.0% +/- 2.1% vs . 20.1% +/- 3.1% of vehicle, n = 6, P < 0.01), significant decrease of plasma CK and LDH and improved recovery of cardiac systolic/diastolic function at the end of R. Treatment with insulin alone decreased blood glucose significantly but still exerted cardioprotective effects comparable with that of GIK. CONCLUSIONS: GIK exerts cardioprotective effects against postischemic myocardial injury and improves cardiac functional recovery in vivo . Insulin, mainly through the anti-apoptotic effect, plays a key role in the GIK-elicited myocardial protection in MI/R.  相似文献   

3.
Clinical and experimental studies have suggested benefit of treatment with intravenous glucose-insulin-potassium (GIK) in acute myocardial infarction. However, patients hospitalized with acute coronary syndromes often experience recurrent myocardial ischemia without infarction that may cause progressive left ventricular (LV) dysfunction. This study tested the hypothesis that anticipatory treatment with GIK attenuates both systolic and diastolic LV dysfunction resulting from ischemia and reperfusion without infarction in vivo. Open-chest, anesthetized pigs underwent 90 min of moderate regional ischemia (mean subendocardial blood flow 0.3 ml x g(-1) x min(-1)) and 90 min reperfusion. Eight pigs were treated with GIK (300 g/l glucose, 50 U/l insulin, and 80 meq/l KCl; infused at 2 ml x kg(-1) x h(-1)) beginning 30 min before ischemia and continuing through reperfusion. Eight untreated pigs comprised the control group. Regional LV wall area was measured with orthogonal pairs of sonomicrometry crystals. GIK significantly increased myocardial glucose uptake and lactate release during ischemia. After reperfusion, indexes of regional systolic function (external work and fractional systolic wall area reduction), regional diastolic function (maximum rate of diastolic wall area expansion), and global LV function (LV positive and negative maximum rate of change in pressure with respect to time) recovered to a significantly greater extent in GIK-treated pigs than in control pigs (all P < 0.05). The findings suggest that the clinical utility of GIK may extend beyond treatment of acute myocardial infarction to anticipatory metabolic protection of myocardium in patients at risk for recurrent episodes of ischemia.  相似文献   

4.
目的:观察罗布麻叶提取物(apocynum venetum leaf extract AVLE)预处理对心肌缺血再灌注(MI/R)损伤的影响。方法:采用SD大鼠MI/R模型,随机分为sham(假手术)组、MI/R组、AVLE预处理+MI/R组,检测血流动力学,采用氯化三苯基四氮唑和伊文思蓝双染法检测心梗面积、以血浆肌酸激酶(CK)和乳酸脱氢酶(LDH)活性检测心肌损伤情况、以超氧化物、丙二醛(MAD)和超氧化物歧化酶(SOD)含量检测心肌氧化应激以及Western blot方法检测gp91phox的表达。结果:与MI/R组相比,AVLE预处理组左室压上升、下降最大速率(±LVdp/dtmax)升高(P0.05),心肌梗死面积减少,两组分别为41.5±4.5%和32.0±3.5%(P0.05),血浆CK和LDH活性分别降低到1653±62 U/L和2461±152 U/L(P0.05),减少了心肌组织超氧化物的含量(P0.05)。AVLE治疗显着降低gp91phox的表达(P0.05),使SOD活性增加(P0.05),MDA水平显著降低(P0.05)。结论:AVLE通过抑制I/R心肌的氧化应激发挥心脏保护作用。  相似文献   

5.

Background

Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach.

Methods

and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5′) or 10-min (RIPC 10′) reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10′. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI).

Conclusions

RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.  相似文献   

6.
We tested the hypothesis that glucose-insulin-potassium (GIK)-induced protection against myocardial infarction depends on ATP-dependent K(+) (K(ATP)) channel activation and is abolished by hyperglycemia before the ischemia. Dogs were subjected to a 60-min coronary artery occlusion and 3-h reperfusion in the absence or presence of GIK (25% dextrose; 50 IU insulin/l; 80 mM/l KCl infused at 1.5 ml x kg(-1) x h(-1)) beginning 75 min before coronary artery occlusion or 5 min before reperfusion. The role of K(ATP) channels was evaluated by pretreatment with glyburide (0.1 mg/kg). The efficacy of GIK was investigated with increases in blood glucose (BG) concentrations to 300 or 600 mg/dl or experimental diabetes (alloxan/streptozotocin). Infarct size (IS) was 29 +/- 2% of the area at risk in control experiments. GIK decreased (P < 0.05) IS when administered beginning 5 min before reperfusion. This protective action was independent of BG (13 +/- 2 and 12 +/- 2% of area at risk; BG = 80 or 600 mg/dl, respectively) but was abolished in dogs receiving glyburide (30 +/- 4%), hyperglycemia before ischemia (27 +/- 4%), or diabetes (25 +/- 3%). IS was unchanged by GIK when administered before ischemia independent of BG (31 +/- 3, 27 +/- 2, and 35 +/- 3%; BG = 80, 300, and 600 mg/dl, respectively). The insulin component of GIK promotes cardioprotection by K(ATP) channel activation. However, glucose decreases K(ATP) channel activity, and this effect predominates when hyperglycemia is present before ischemia.  相似文献   

7.
8.
The effect of dinitrosyl iron complex (DNIC) with L-cysteine on the hemodynamic indices and the size of myocardial infarction, which was induced by 40-min regional ischemia and subsequent 60-min reperfusion, have been studied in rats in vivo. Intravenous bolus injection of DNIC (3.1 μmol/kg body weight in 0.5 ml saline) was performed before regional ischemia; the control group was administered the same volume of saline. DNIC administration significantly decreased the mean blood pressure throughout the experiment. DNIC reduced the duration of cardiac arrhythmias to 170 ± 10 s as against 445 ± 30 s in control. The myocardial infraction size significantly decreased in the DNIC group compared to control (38.0 ± 1.4 and 48.0 ± 3.9% of the area at risk, respectively; p < 0.05). A combination of the vasodilatory effect of DNIC with the reduction of the damaging effect of cardiac ischemia and reperfusion encourage the development of hypotensive and antiischemic drugs on this class of NO donors.  相似文献   

9.
After a myocardial infarction (MI), an episode of ischemia-reperfusion (I/R) can result in a greater impairment of left ventricular (LV) regional function (LVRF) than that caused by an initial I/R episode in the absence of MI. Membrane type-I matrix metalloproteinase (MT1-MMP) proteolytically processes the myocardial matrix and is upregulated in LV failure. This study tested the central hypothesis that a differential induction of MT1-MMP occurs and is related to LVRF after I/R in the context of a previous MI. Pigs with a previous MI [3 wk postligation of the left circumflex artery (LCx)] or no MI were randomized to undergo I/R [60-min/120-min left anterior descending coronary artery (LAD) occlusion] or no I/R as follows: no MI and no I/R (n = 6), no MI and I/R (n = 8), MI and no I/R (n = 8), and MI and I/R (n = 8). Baseline LVRF (regional stroke work, sonomicrometry) was lower in the LAD region in the MI group compared with no MI (103 ± 12 vs. 188 ± 26 mmHg·mm, P < 0.05) and remained lower with peak ischemia (35 ± 8 vs. 88 ± 17 mmHg·mm, P < 0.05). Using a novel interstitial microdialysis method, MT1-MMP was directly measured and was over threefold higher in the LCx region and over twofold higher in the LAD region in the MI group compared with the no MI group at baseline. MT1-MMP fluorogenic activity was persistently elevated in the LCx region in the MI and I/R group but remained unchanged in the LAD region. In contrast, no changes in MT1-MMP occurred in the LCx region in the no MI and I/R group but increased in the LAD region. MT1-MMP mRNA was increased by over threefold in the MI region in the MI and I/R group. In conclusion, these findings demonstrate that a heterogeneous response in MT1-MMP activity likely contributes to regional dysfunction with I/R and that a subsequent episode of I/R activates a proteolytic cascade within the MI region that may contribute to a continued adverse remodeling process.  相似文献   

10.
The effect of myosin ATPase inhibitor, 2,3-butanedione monoxime (BDM) used in the range of concentrations 1.25–10.0 mM), on recovery of functions of isolated rat heart subjected to normothermic (37 °C) total ischemia for 35 min has been investigated. BDM perfusion was performed at a flow rate of 4 ml/min during 5 min before ischemia (BDM-I) or before 25-min reperfusion (BDM-R). Control hearts were perfused with Krebs solution at the same flow rate. The highest functional recovery of heart and coronary vessels was observed during infusion of 2.5 mM BDM before ischemia. At the end of reperfusion ATP and phosphocreatine (PCr) content in hearts of this group was significantly higher whereas the level of lactate was two times lower than in control; total creatine content (ΣCr) did not differ from the initial level. Similar but less pronounced changes in the improvement of aerobic metabolism and maintenance of ΣCr after reperfusion were also observed in the case of infusion of 2.5 mM BDM before reperfusion. They were consistent with reduced recovery of functions of heart and coronary flow compared with these parameters observed in the BDM-I group. 2.5 mM BDM caused almost 2-fold decrease in release of cardiac lactate dehydrogenase into myocardial perfusate in the BDM-I and BDM-R groups (compared with control); this suggests lower damage of cell membranes. These results suggest that improvement of energy supply of postischemic cardiomyocytes may be a key factor determining cardioprotector effectiveness of short-term administration of BDM before ischemia.  相似文献   

11.
In the time-span of almost a century, a large amount of experimental evidence has been accumulated that underlines the importance of glucose metabolism during ischaemia/reperfusion of the heart. As early as 1912, Goulston suggested that treatment with glucose could be beneficial in several heart diseases. The first experimental results on the mechanical effects of insulin and glucose in the isolated heart were reported by Visscher and Muller in 1926. In 1935, Evans and colleagues showed that the uptake of glucose is increased in the ischaemic myocardium. Almost 30 years later, Sodi-Pallares and colleagues suggested that metabolic interference during myocardial ischaemia with GIK infusion decreased electrocardiographic signs of ischaemia. They also showed that glucose-insulin-potassium (GIK) infusion resulted in a lower occurrence of arrhythmias. They attributed this effect mainly to the influx of potassium in ischaemic cardiomyocytes. In order to further stimulate potassium transport into the cell, insulin was administered. Consequently, the rise of intercellular calcium is curtailed by the influx of potassium and so the incidence of arrhythmias is reduced. However, systemic infusion of insulin stimulates the uptake of glucose in many celltypes, which may result in hypoglycaemic episodes. Consequently, it is not possible to administer potassium and insulin in high concentrations without adding glucose. Interventions in the glucose metabolism in the clinical arena, whether or not used to correct acute hyperglycaemia, encompass three potentially effective elements: glucose, insulin and potassium.  相似文献   

12.
Objective Physical activity has been shown to improve cardiovascular function and to be beneficial to type 2 diabetic patients. However, the effects of aerobic exercise (AE) on myocardial ischemia/reperfusion (MI/R) are largely unclear. Therefore, the aims of the present study were to determine whether long-term AE can protect the heart against I/R injury, and if so, to investigate the underlying mechanism. Methods Adult male Sprague–Dawley rats were randomly subjected to 8 weeks of either sedentary or free-loading swimming exercise (3 h/day, 5 d/week). Then the animals were subjected to 30 min MI followed by 4 h R. Arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the whole MI/R procedure. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (TUNEL analysis) were determined in a blinded manner. Results MI/R caused significant cardiac dysfunction and myocardial apoptosis (strong TUNEL-positive staining). Compared with sedentary group, rats subjected to 8 weeks of AE showed protection against MI/R as evidenced by reduced myocardial infarction (26.8 ± 1.5% vs. 35.3 ± 2.4%, n = 8, P < 0.05), inhibited cardiomyocyte apoptosis (decreased apoptotic index (12.4 ± 1.1% vs. 21.0 ± 1.7%, n = 8, P < 0.01) and decreased myocardial caspase-3 activity), decreased plasma CK and LDH activities and improved recovery of cardiac systolic/diastolic function (including LVSP and ±LVdP/dt) at the end of R. Moreover, exercise resulted in 1.7-fold, 2.5-fold and 2.5-fold increases in Akt expression, Akt phosphorylation and glycogen synthase kinase-3β phosphorylation in I/R myocardium, respectively (n = 3, all P < 0.05). More importantly, treatment with wortmannin, a PI3 kinase inhibitor, 15 min before R not only significantly blocked Akt phosphorylation (P < 0.05) in exercise rats, but also abolished long-term AE-induced cardioprotection for the I/R heart as manifested by increased apoptosis and myocardial infarction, and reduced cardiac function. Conclusion Long-term AE exerts cardioprotective effect against MI/R injury, including anti-cardiomyocyte apoptosis, which is at least partly via PI3 kinase-dependent and Akt-mediated mechanism.  相似文献   

13.
《Free radical research》2013,47(5):361-367
MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one) is a newly developed antioxidant which has been shown to reduce brain edema in cerebral ischemia through inhibition of the lipoxygenase pathway of arachidonic acid. However, its effect on myocardial reperfusion injury after prolonged ischemia has not yet been demonstrated. We compared the mode of the effect of MCI-186 and recombinant human CuZn superoxide dismutase (rh-SOD) in isolated perfused rat hearts subjected to 60-min ischemia followed by 60-min reperfusion. Left ventricular developed pressure (LVDP), necrotic area and the release of creatine phosphokinase (CPK) and endogenous CuZn superoxide dismutase (endoge-SOD) were measured to evaluate myocardial damage. The decrease in left coronary flow (CBF) was measured as an index of the damage of left coronary circulation. MCI-186 (17.5 mg/L) was perfused for 10 min in the MCI group and rh-SOD (70 mg/L) was perfused during the reperfusion period in the SOD group starting 5 min prior to reperfusion. The release patterns of CPK and endoge-SOD were analyzed to elucidate the difference in the mode of protection of MCI-186 and rh-SOD. The LVDP remained higher in both MCI and SOD groups than that of control (76 ± 1, 77 ± 2 and 69 ± 1% of preischemic value, respectively). The necrotic area was significantly attenuated in both MCI and SOD groups compared with that in the control group (16 ± 1,14 ± 1 and 32 ± 170, respectively, p<0.05). Total CPK release was lower in both MCI and SOD groups thfn in the control (78 ± 7, 100 ± 2 and 116 ± 4 × 103 units/g myocardium respectively). The decrease in CPK release was more marked in the MCI group than that in the SOD group (p<0.05). The reduction in CBF was significantly attenuated by the treatment with rh-SOD or MCI-186, but the effect was much higher in the SOD group than in the MCI group (69 ± 5, 58 ± 2, and 48 ± 2% in SOD, MCI and control groups, respectively). The release pattern of endoge-SOD was identical to that of CPK and thus this did not distinguish the mode of effect of MCI-186 from that of rh-SOD. These results indicate that MCI-186 reduces reperfusion injury in isolated perfused hearts with prolonged ischemia and the effect is more closely related to the reduction of myocyte damage than the preservation of the coronary circulation.  相似文献   

14.

Background

Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE).

Methods

Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining.

Results

IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013).

Conclusion

RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.  相似文献   

15.
Changes in nitric oxide concentration in the rat myocardium in situ during temporary occlusion of the anterior descending coronary artery and subsequent reperfusion were monitored by microdialysis in the risk zone and a normal zone, using an NO trap (complex of ferrous ions with N-methyl-D-glucamine dithiocarbamate, Fe3+-MGD). The amplitude of the EPR signal of the reduced adduct NO-Fe2+-MGD in the samples from the risk zone increased during the 40-min occlusion and remained higher than the initial or the current control values during 60-min postischemic reperfusion, indicating substantial NO production. By the end of reperfusion, the infarct size was 47 ± 3% of the risk area. The contents of ATP, creatine phosphate, and total creatine in the risk zone decreased to respectively 44 ± 4, 51 ± 5, and 60 ± 3% of the initial values, whereas the level of lactate was six times the initial. The normal zone of the left ventricle showed no changes in NO or energy metabolite levels throughout the experiment. Thus, intense nitric oxide production in acute regional ischemia and reperfusion is associated with disturbance of energy metabolism, cell membrane damage, and death of cardiomyocytes.  相似文献   

16.
Reperfusion injury is one of the main reasons of cardiac disease morbidity. Phytopharmaceuticals are gaining importance in modern medicine of cardioprotection because of their multiplex capacity. The aim of this study was to investigate the effect of diosgenin on the inflammatory response induced by myocardial ischemia and reperfusion injury and the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels in this regard. Wistar rats (250–300 g) were used in this study. The Langendorff-perfused hearts of animals were subjected to a 30-min global ischemia followed by a 90-min reperfusion. The lactate dehydrogenase (LDH) release was measured by spectrophotometry. The levels of inflammatory mediators tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6 in the supernatant of heart’s left ventricle were measured using an enzyme-linked immunosorbent assay rat specific ELISA kit. The LDH release into the coronary effluent during reperfusion was significantly decreased, and cardiac contractility significantly improved by diosgenin preadministration as compared with those of control or Cremophor-EL (solvent of diosgenin) groups (398?±?48 vs. 665?±?65 or 650?±?73 ml/min) (P?<?0.01). Administration of diosgenin before the main ischemia significantly reduced the levels of IL-6 (P?<?0.05), IL-1β, and TNF-α (P?<?0.01) in the reperfusion phase of diosgenin-treated hearts as compared with untreated control hearts. Inhibition of mitoKATP channels by 5-hydroxydecanoate significantly reverses the cardioprotective effects of diosgenin (P?<?0.05). The findings of the present study indicate that preconditioning with diosgenin may induce cardioprotective effect against reperfusion injury through reducing the production of inflammatory mediators and activating the mitoKATP channels.  相似文献   

17.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

18.
Matrigel promotes angiogenesis in the myocardium from ischemic injury and prevents remodelling of the left ventricle. We assessed the therapeutic efficacy of intracardiac matrigel injection and matrigel‐mediated stem cell homing in a rat myocardial infarction (MI) model. Following MI, matrigel (250 μl) or phosphate‐buffered solution (PBS) was delivered by intracardiac injection. Compared to the MI control group (MI‐PBS), matrigel significantly improved left ventricular function (n= 11, P < 0.05) assessed by pressure–volume loops after 4 weeks. There is no significant difference in infarct size between MI‐matrigel (MI‐M; 21.48 ± 1.49%, n= 10) and MI‐PBS hearts (20.98 ± 1.25%, n= 10). The infarct wall thickness of left ventricle is significantly higher (P < 0.01) in MI‐M (0.72 ± 0.02 mm, n= 10) compared with MI‐PBS (0.62 ± 0.02 mm, n= 10). MI‐M hearts exhibited higher capillary density (border 130.8 ± 4.7 versus 115.4 ± 6.0, P < 0.05; vessels per high‐power field [HPF; 400×], n= 6) than MI‐PBS hearts. c‐Kit+ stem cells (38.3 ± 5.3 versus 25.7 ± 1.5 c‐Kit+ cells per HPF [630×], n= 5, P < 0.05) and CD34+ cells (13.0 ± 1.51 versus 5.6 ± 0.68 CD34+ cells per HPF [630×], n= 5, P < 0.01) were significantly more numerous in MI‐M than in MI‐PBS in the infarcted hearts (n= 5, P < 0.05). Intracardiac matrigel injection restores myocardial functions following MI, which may attribute to the improved recruitment of CD34+ and c‐Kit+ stem cells.  相似文献   

19.
Taurine, glutamine, glutamate, aspartate, and alanine are the most abundant intracellular free amino acids in human heart. The myocardial concentration of these amino acids changes during ischemia and reperfusion due to alterations in metabolic and ionic homeostasis. We hypothesized that dilated left ventricle secondary to mitral valve disease has different levels of amino acids compared to the right ventricle and that such differences determine the extent of amino acids' changes during ischemia and reperfusion. Myocardial concentration of amino acids was measured in biopsies collected from left and right ventricles before cardioplegic arrest (Custodiol HTK) and 10 min after reperfusion in patients undergoing mitral valve surgery. The dilated left ventricle had markedly higher (P < 0.05) concentrations (nmol/mg wet weight) of taurine (17.0 ± 1.5 vs. 10.9 ± 1.5), glutamine (20.5 ± 2.4 vs. 12.1 ± 1.2), and glutamate (18.3 ± 2.2 vs. 11.4 ± 1.5) when compared to right ventricle. There were no differences in the basal levels of alanine or aspartate. Upon reperfusion, a significant (P < 0.05) fall in taurine and glutamine was seen only in the left ventricle. These changes are likely to be due to transport (taurine) and/or metabolism (glutamine). There was a marked increase in the alanine to glutamate ratio in both ventricles indicative of ischemic stress which was confirmed by global release of lactate during reperfusion. This study shows that in contrast to the right ventricle, the dilated left ventricle had remodeled to accumulate amino acids which are used during ischemia and reperfusion. Whether these changes reflect differences in degree of cardioplegic protection between the two ventricles remain to be investigated.  相似文献   

20.
Prolonged ischemia amplified iscehemia/reperfusion (IR) induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC) by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4), 2 stages of 30-min IC (I30 × 2), and total 60-min ischema (I60) in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2 -. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS) level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose)-polymerase (PARP) degradation fragments, microtubule-associated protein light chain 3 (LC3) and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD), Copper-Zn superoxide dismutase (CuZnSOD) and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号