首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A solid state fermentation (SSF) process for the production of lignin peroxidase was optimized to enhance enzyme production by Phanerochaete chrysosporium. Optimization of the corncob SSF medium caused a significant reduction in fermentation time to give maximum lignin peroxidase yield. Supplementation of the SSF medium by low concentrations of peptone, yeast extract and Tween-80 enhanced lignin peroxidase production. Maximum yield of lignin peroxidase was 13.7 U/gds (units per gram dry substrate) noted after 5 days of SSF with 70% moisture and 20% (v/w) inoculum.  相似文献   

2.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

3.
Cell suspension cultures of three varieties of Capsicum annuum L., each with a different degree of sensitivity to the fungus Phytophthora capsici, responded to elicitation by both lyophilized mycelium and fungus filtrate with a hypersensitive reaction. They showed the synthesis or accumulation of PR-proteins with peroxidase (EC 1.11.1.7) activity and the accumulation of lignin-like polymer (as measured by derivatization with thioglycolic acid). The cultivation medium was optimised for both plant and fungus growth in order to avoid any stress during their combination. The resistant pepper variety, Smith-5, showed a more intense response to the elicitor preparations than the sensitive varieties, Americano and Yolo Wonder. This was particularly evident when the cell suspensions were elicited with the filtrate. After elicitation, the cell walls thickened through the accumulation of lignin, as can be observed by staining microscope preparations with methylene blue. Elicitation also reduced the level of total peroxidase activity in the susceptible varieties, while such activity increased in resistant varieties, and was accompanied by de novo expression of acidic peroxidase isoenzymes in the extracellular and cell wall fractions. Of note was the PR protein of pI 5.7 showing peroxidase activity, which was induced by both elicitor types in the elicited cell suspensions of the resistant variety alone, making it a marker of resistance. The increases in the activity of these peroxidases in the resistant variety are in concordance with the accumulation of lignin observed 24 h after inoculation by both elicitors from the fungus. The possible role of these isoenzymes in lignin biosynthesis, used to reinforce the cell walls against fungal penetration of the cells, is discussed. These results are in accordance with those previously observed in plant stem sections.  相似文献   

4.
Summary Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH4)2SO4 precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K m and V max values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L −1 and 0.088 mmol (mg protein) −1 min −1 respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6 of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45 °C.  相似文献   

5.
Ganoderma australe is a white-rot fungus that causes a selective wood biodelignification in some hardwoods found in the Chilean rainforest. Ceriporiopsis subvermispora is also a lignin-degrading fungus used in several biopulping studies. The enzymatic system responsible for lignin degradation in wood can also be used to degrade recalcitrant organic pollutants in liquid effluents. In this work, two strains of G. australe and one strain of C. subvermipora were comparatively evaluated in the biodegradation of ABTS and the dye Poly R-478 in liquid medium, and in the pretreatment of Eucalyptus globulus wood chips for further kraft biopulping. Laccase was detected in liquid and wood cultures with G. australe. Ceriporiopsis subvermispora produce laccase and manganese peroxidase when grown in liquid medium and only manganese peroxidase was detected during wood decay. ABTS was totally depleted by all strains after 8 days of incubation while Poly R-478 was degraded up to 40% with G. australe strains and up to 62% by C. subvermispora after 22 days of incubation. Eucalyptus globulus wood chips decayed for 15 days presented 1–6% of lignin loss and less than 2% of glucan loss. Kraft pulps with kappa number 15 were produced from biotreated wood chips with 2% less active alkali, with up to 3% increase in pulp yield and up to 20% less hexenuronic acids than pulps from undecayed control. Results showed that G. australe strains evaluated were not as efficient as C. subvermispora for dye and wood biodegradation, but could be used as a feasible alternative in biotechnological processes such as bioremediation and biopulping.  相似文献   

6.
We have investigated the abilities of extracellular enzymes from dark-grown cell-suspension cultures of sycamore maple (Acer pseudoplatanus L.) to oxidize monolignols, the precursors for lignin biosynthesis in plants, as well as a variety of other lignin-related compounds. Laccase and peroxidase both exist as a multiplicity of isoenzymes in filtrates of spent culture medium, but their abilities to produce water-insoluble, dehydrogenation polymers (DHPs) from the monolignols (in the presence of hydrogen peroxide for the peroxidase reaction) appear identical whether or not the enzymes are purified from the concentrated filtrates or left in a crude mixture. The patterns of bonds formed in these DHPs are identical to those found in DHPs synthesized using horseradish peroxidase or fungal laccase, and many of these bonds are found in the natural lignins extracted from different plant sources. On the other hand, sycamore maple laccase is very much less active on phenolic substrates containing multiple aromatic rings than is sycamore maple peroxidase. We suggst that whereas laccase may function during the early stages of lignification to polymerize monolignols into oligo-lignols, cell-wall peroxidases may function when H2O2 is produced during the later stages of xylem cell development or in response to environmental stresses.Abbreviations DHP dehydrogenation polymer - IEF isoelectric focuring - NMR nuclear magnetic resonance - PAGE polyacrylamide gel electrophoresis The authors wish to thank Dr. Masahiro Samejima (University of Tokyo) for provision of lignin model compounds and Dr. Göran Gellerstadt (Royal Institute of Technology, Sweden) for helpful suggestions regarding stilbene formation and light spectroscopy. Monolignols were prepared by Mr. Nate Weymouth with help from Dr. Herb Morrison (USDA/ARS, Richard B. Russell Research Center, Athens, GA). Thanks also to Ms. Izabella Poppe of the Complex Carbohydrate Research Center (CCRC) for assistance with carbohydrate analyses, and Mr. Vincent Sorrentino for help with the growth of cell-suspension cultures.  相似文献   

7.
In this study the biotransformation of lignin by-products of beechwood pulping with a soil-inhabiting yeast strain of Trichosporon pullulans was examined. The structural and molecular changes in the lignin during a cultivation process were determined by 13C NMR spectroscopy and gel permeation chromatography analysis, which confirmed the ability of the yeast strain tested to biodegrade lignin. Enzymatic analysis showed the presence of lignin peroxidase and Mn(II) peroxidase in the culture supernatant. The ligninolytic activity of both enzymes increased under carbon-depleted conditions. This observation is particularly important in the biodegradation of recalcitrant lignins in soil.  相似文献   

8.
The present work was carried out to determine the optimum culture conditions of Phanerochaete chrysosporium (ATCC 20696) for maximizing ligninolytic enzyme production. Additionally, separation of its lignin peroxidase was conducted. After experiments, an optimized culture medium/condition was constructed (per liter of Kirk’s medium): dextrose 10 g, ammonium tartrate 0.11 g, Tween-80 0.5 g, MnSO4 7 mg, and veratryl alcohol 0.3 g in 10 mM acetic acid buffer pH 4.5. Under the optimized experimental condition, both lignin peroxidase (LiP) and manganese peroxidase (MnP) were detected and reach the highest yield at 30°C on the 8th day culture. Salt precipitation methods was used in the extraction and purification processes. Results show that salt precipitation with 60% (NH4)2SO4 yielded the best result, especially toward LiP. Enzyme separation was conducted and two fractions with LiP activity. LiP1 and LiP2 were produced using three columns sequentially: desalting column, Q FF ion exchange column and Sepharyl S-300 HR gel filtration. LiP1 and LiP2 had been purified by 9.6- and 7.6-fold with a yield of 22.9% and 18.6%, respectively. According to the data of sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE), the molecular weights of the enzymes are 38 kDa and 40 kDa, respectively.  相似文献   

9.
Lignin peroxidase (LiP) plays an active role in the biodegradation of lignin and phenolic structures resembling lignin. The role of other enzymes in the biodegradation of recalcitrant compounds, e.g. manganese(II)-peroxidase, is uncertain. Solid manganese(IV)oxide addition improved the production of manganese(II)-dependant peroxidase (MnP) and H2O2 and increased the rate of biodegradation of Aroclor 1254 in a nitrogen-limited medium by the white rot fungus Coriolus versicolor. MnP activity was detected 48 h after the addition of MnO2 to the cultures and was absent in cultures that did not receive MnO2. The rate of Aroclor 1254 removal by C. versicolor was influenced by the concentration of MnO2. 34.5 mM concentrations only increased the H2O2 production. Removal of Aroclor 1254 in the absence of MnO2 still took place which implied the presence of (LiP) or nonspecific absorption. The cultures containing 57.5 mM MnO2 removed ca. 84% of the initial 750 mg l−1 Aroclor in 6 days of incubation. Cultures with no MnO2 and 34.5 mM removed 79 and 76%, respectively. Cultures with MnP or LiP as the dominant enzyme species removed penta- and hexachlorobiphenyls at a slower rate than tri- and tetrachlorobiphenyl.  相似文献   

10.
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol (PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.  相似文献   

11.
A Norway spruce (Picea abies) tissue culture line that produces extracellular lignin into the culture medium has been used as a model system to study the enzymes involved in lignin polymerization. We report here the purification of two highly basic culture medium peroxidases, PAPX4 and PAPX5, and isolation of the corresponding cDNAs. Both isoforms had high affinity to monolignols with apparent Km values in μM range. PAPX4 favoured coniferyl alcohol with a six-fold higher catalytic efficiency (Vmax/Km) and PAPX5 p-coumaryl alcohol with a two-fold higher catalytic efficiency as compared to the other monolignol. Thus coniferyl and p-coumaryl alcohol could be preferentially oxidized by different peroxidase isoforms in this suspension culture, which may reflect a control mechanism for the incorporation of different monolignols into the cell wall. Dehydrogenation polymers produced by the isoforms were structurally similar. All differed from the released suspension culture lignin and milled wood lignin, in accordance with previous observations on the major effects that e.g. cell wall context, rate of monolignol feeding and other proteins have on polymerisation. Amino acid residues shown to be involved in monolignol binding in the lignification-related Arabidopsis ATPA2 peroxidase were nearly identical in PAPX4 and PAPX5. This similarity extended to other peroxidases involved in lignification, suggesting that a preferential structural organization of the substrate access channel for monolignol oxidation might exist in both angiosperms and gymnosperms.  相似文献   

12.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

13.
Increased manganese concentration during submerged cultivation of the ligninolytic white rot fungus Panus tigrinus 8/18 on N-limited mineral medium resulted in the induction of Mn-peroxidase and laccase. The Mn-peroxidase was purified with the purity factor RZ (A 406/A 280) = 4.3. The purified enzyme catalyzed H2O2-dependent oxidation of phenol oxidase substrates (aromatic amines, 2,2"-azinobis-(3-ethylbenzthiazolinesulfonic acid), hydroquinone, 2,6-dimethoxyphenol) without Mn2+, which is not typical for the usual Mn-peroxidases. Guaiacol and 2,4,6-trichlorophenol were not oxidized in the absence of Mn2+. Study of absorption spectra of the intermediates of the catalytic cycle revealed that this peroxidase is able to complete the redox cycle, reducing one-electron oxidized intermediate (Compound II) by Mn2+, as well as by an organic substrate (hydroquinone). This means that the enzyme is a hybrid Mn-peroxidase, different from the common Mn-peroxidases from ligninolytic fungi.  相似文献   

14.
Lignin was mineralized in the experiments in which 14C-lignin was incubated with lignin peroxidase or manganese peroxidase in a tartrate buffer in the presence of cycloheximide-treated protoplasts obtained from the ligninolytic mycelia of Phanerochaete chrysosporium. The rate of lignin mineralization was dependent on the lignin peroxidase or manganese peroxidase concentration in the medium. In the experiments in which lignin was incubated with lignin peroxidase or manganese peroxidase, lignin was repolymerized irrespective of the presence of protoplasts mineralizing lignin, suggesting that an active degradation of lignin and repolymerization took place. Taking into account that lignin peroxidase and manganese peroxidase were the only extracellular enzymes in the experiments in which lignin was mineralized by the protoplasts, it is postulated that lignin peroxidase and/or manganese peroxidase can degrade lignin into small fragments which can then be further absorbed by the fungal cells and subsequently degraded to CO2.  相似文献   

15.
The biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) byPseudomonas cepacia was assessed by microcalorimetry in a liquid medium and in sterilized soil at 25°C under aerobic conditions. It was found that thermograms of the rate of heat evolved versus time (dQ/dt versust) can be used as a diagnostic tool to identify the timet 1 required for the primary biodegradation of 2,4-D and the timet f required for the completion of the biodegradation activity in a liquid medium as well as in soil. Microcalorimetry can also be used as an analytical tool to monitor the progress of 2,4-D consumption during the biodegradation process in a liquid medium and to measure the importance of the soil sorption/desorption of intermediate metabolites. A new concept called bioeffort was defined as the product of the biodegradation time (t) and the biomass concentration (X) at that time. This concept was used to predict either the biomass concentration required or the duration of the primary biodegradation of 2,4-D in soil from the data obtained from a liquid medium.  相似文献   

16.
Modification of lignin by Geotrichum klebahnii   总被引:2,自引:0,他引:2  
13C-NMR spectroscopic analysis indicates that the yeast-like species Geotrichum klebahnii is an efficient microorganism for lignin biodegradation. This strain modified beechwood lignin even if it was the only carbon source by C-C side chain cleavage, C-oxidations, aromatic ring cleavage and reductive reactions. The obtained results outline prospective application of G. klebahnii for biotechnological pre-treatment of lignocellulosic materials.  相似文献   

17.
The influence of Zn2+ (6.0 × 10–3 –18.0 × 10–3 M) and Cu2+ (4 × 10–4 –1.2 × 10–4 M) in the basal medium on mycelial growth (dry weight), activities of lignin peroxidase (Lip), manganese peroxidase (Mnp), solubilization, and mineralization (14CO2 evolution) of lignin during a period of 3 weeks was studied in Phanerochaete chrysosporium strain MTCC-787. Highest mycelial growth was obtained at 0.6 M Zn2+ and 0.4 M Cu2+ levels. Enzyme activities were found to increase up to the highest levels of both the trace elements. However, Zn2+ had a relatively more stimulatory effect on Lip production and the reverse was true in case of Cu2+. [14C]Lignin solubilization was also promoted by higher levels of both trace elements. Mineralization of [14C]lignin was optimal at 6.0 M Zn2+ and 1.2 M Cu2+. The stimulatory effect of Zn2+ on Lip production was correlated with higher rates of [14C]lignin mineralization.  相似文献   

18.
The production of ligninolytic enzymes was studied in surface cultures of the South American white-rot fungus Nematoloma frowardii b19 and four other strains of this ecophysiological group (Clitocybula dusenii b11, Auricularia sp. m37a, wood isolates u39 and u45), which are able to depolymerize low-rank-coal-derived humic acids with the formation of fulvic-acid-like compounds. The fungi produced the three crucial enzymes of lignin degradation – lignin peroxidase, manganese peroxidase and laccase. In the case of N. frowardii b19, laccase and the two peroxidases could be stimulated by veratryl alcohol. Manganese (II) ions (Mn2+) caused a rapid increase of Mn peroxidase activity accompanied by the complete repression of lignin peroxidase. Under nitrogen-limited conditions the growth as well as the production of ligninolytic enzymes was partly repressed. During the depolymerization process of coal humic acids using solid agar media, gradients of ligninolytic enzyme activities toward 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate) and syringaldazine were detectable inside the agar medium. Received: 5 August 1996 / Received revision: 13 November 1996 / Accepted: 15 November 1996  相似文献   

19.
Lignin peroxidase has been extensively studied due to the potential use of this enzyme in environmental pollution control. Important aspects of the production of the enzyme by the white rot fungus, Phanerochaete chrysosporium, include the improvement of yield results and cell maintenance. In the present work, Phanerochaete chrysosporium was immobilized in polyurethane foam and used for repeated-batch fermentations with various dilution of the initial medium (D), and lignin peroxidase production was investigated. The peak of 283 ± 17.5 U lignin peroxidase/l production rate was obtained at a D of 1/5, with significantly lower production rates seen at higher and lower dilution ratios. When six cycles of repeated-batch fermentation were conducted using a D of 1/5, the results revealed that at least four cycles of repeated-batch fermentation were possible with a high lignin peroxidase production rate under a cut-off value of 178 ± 3.87 U/l. Furthermore, the cell-free culture broth could be successfully concentrated to 2,800 U/l by ultrafiltration. Thus, the present study shows that optimizing the dilution of the utilized nutritional medium can improve repeated batch production of lignin peroxidase from immobilized P. chrysosporium, in terms of both cycle number and output.  相似文献   

20.
Summary Lignin peroxidases produced byPhanerochaete chrysosporium have several important potential industrial applications based on their ability to degrade lignin and lignin-like compounds. A stirred tank reactor system for the production of lignin peroxidases is described here. Included in this study is an examination of the mechanics of pellet biocatalyst formation and the optimization of an acetate buffered medium. Higher levels of lignin peroxidase were obtained with acetate buffer compared to the other buffer systems tested. Concentrations of 0.05% (w/v) Tween 80 and 0.4 mM veratryl alcohol gave optimal lignin peroxidase activity in acetate buffered medium. In shake flask cultures, mycelial fragments in the inoculum aggregated into pellets during the first eight hours of incubation and thereafter increased in size through the eighth day. The agitation rate in shake flask cultures affected pellet size, the number of pellets formed, and lignin peroxidase activity. Transfer of fungal pellets from shake flask culture to a continuously oxygenated baffled stirred tank reactor (STR) resulted in production of high lignin peroxidase titres comparable to those of shake flask cultures when the agitation rate, oxygen dispersion and foaming were closely controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号