首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four top-class runners who regularly performed marathon and long-distance races participated in this study. They performed a graded field test on an artificial running track within a few weeks of a competitive marathon. The test consisted of five separate bouts of running. Each period lasted 6 min with an intervening 2-min rest bout during which arterialized capillary blood samples were taken. Blood was analysed for pH, partial pressure of oxygen and carbon dioxide (P02 and PCO2) and lactate concentration ([la]b). The values of base excess (BE) and bicarbonate concentration ([HCO3 ]) were calculated. The exercise intensity during the test was regulated by the runners themselves. The subjects were asked to perform the first bout of running at a constant heart rate f c which was 50 beats · min–1 below their own maximal f c. Every subsequent bout, each of which lasted 6 min, was performed with an increment of 10 beats · min–1 as the target f c. Thus the last, the fifth run, was planned to be performed with fc amounting to 10 beats · min–1 less than their maximal f c. The results from these runners showed that the blood pH changed very little in the bouts performed at a running speed below 100% of mean marathon velocity ( m). However, once mwas exceeded, there were marked changes in acid-base status. In the bouts performed at a velocity above the mthere was a marked increase in [la]b and a significant decrease in pH, [HCO3 ], BE and PCO2. The average marathon velocity ( m) was 18.46 (SD 0.32) km·h–1. The [la]b at a mean running velocity of 97.1 (SD 0.8) % of mwas 2.33 (SD 1.33) mmol ·l–1 which, compared with a value at rest of 1.50 (SD 0.60) mmol·l–1, was not significantly higher. However, when running velocity exceeded the vm by only 3.6 (SD 1.9) %, the [la]b increased to 6.94 (SD 2.48) mmol·l-1 (P<0.05 vs rest). We concluded from our study that the highest running velocity at which the blood pH still remained constant in relation to the value at rest and the speed of the run at which [la]b began to increase significantly above the value at rest is a sensitive indicator of capacity for marathon running.  相似文献   

2.
The regression of oxygen uptake (O2) on power output and the O2 demand predicted for suprapeak oxygen uptake (O2peak) exercise (power output = 432 W) were compared in ten male cyclists [C, mean O2peak = 67.9 (SD 4.2) ml · kg–1 · min–1] and nine active, yet untrained men [UT, mean O2peak = 54.1 (SD 6.5) ml · kg–1 · min–1]. The O2-power regression was determined using a continuous incremental cycle test (CON4), performed twice, which comprised several 4-min exercise periods progressing in intensity from approximately 40%–85% O2peak. Minute ventilation (E), heart rate (HR), respiratory exchange ratio (R), blood lactate concentration ([1a]b) and rectal temperature (T re) were measured at rest and during CON4. The slope of the O2-power regression was greater (P 0.05) in C [12.4 (SD 0.7) ml · min–1. W–1] compared to UT [11.7 (SD 0.4) ml · min–1 W–1]; as a result, the O2 demand (at 432 W) was also higher (P 0.05) in C [5.97 (SD 0.23) l · min–1] than UT [5.70 (SD 0.15) 1 · min–1]. ExerciseR and [la]b were lower (P 0.05) in C .in comparison to UT at all power outputs, whereas E and HR were relatively lower (P 0.05) in C at power outputs approximating 180 W, 220 W and 270 W. Differences in fat metabolism estimated over the first three power outputs accounted for approximately 19% of the difference in O2-power slopes between the groups and up to 46% of the difference in O2 at a given intensity. Although the O2-power regressions were linear for C [r = 0.997 (SD 0.001)] and UT [r = 0.997 (SD 0.001)], the O2-power slope was higher at power outputs at or above the lactate threshold (13.2 ml · min–1 · W–1 than at lower intensities (11.6 ml · min–1 · W–1) in C, an effect which was less profound in UT. As a result, the exclusion of O2 at the highest power outputs completely abolished the difference in O2-power slopes between C and UT. Thus, the relatively higher O2 during incremental exercise in C can be almost entirely attributed to the higher O2 cost of cycling at higher power outputs. In addition, the presence of non-linear responses in O2 at higher intensities also confirms the invalidity of describing the O2 response across a wide range of power outputs using a linear function, and challenges the validity of predicting the O2 demand of more intense exercise by a linear extrapolation of this same function.  相似文献   

3.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

4.
Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid productivities from chemostat cultures of an isolate of Isochrysis galbana have been studied. The productivities reached in the interval of dilution rates between 0.0295 h–1 and 0.0355 h–1 were 1.5mg·1–1·h–1 for lipids, 300 g·1–1·h–1 for EPA and 130g1·1–1·h–1 for DHA. Furthermore, light attenuation by mutual shading, and agitation speed influences on growth and fatty acid composition were analysed. A model relating steady-state dilution rates to internal average light intensity has been proposed, the parameter values of which obtained by non-linear regression were: maximum specific growth rate (max)=0.0426 h–1; the affinity of cells to light (Ik) = 10.92 W·m–2; the exponent (n) = 5.13; regression coefficient (r 2)=0.9999. Correspondence to: E. Molina Grima  相似文献   

5.
Summary The function of the caecal bulb, and its adaptation to chronic high- or low-Na+ intake, was investigated by in vivo perfusion of anaesthetised birds. Effects of acute aldosterone injection (125 g·kg–1 body mass) were also measured.Evidence was found for primary active net absorption of Na+, inducing parallel Na-linked absorption of water and Cl and secretion of K+. Around 20–35% of total Cl absorption and K+ secretion were independent of Na+ fluxes, and these components appear to be driven by passive processes with apparent conductances of 6.3×10–3 (G Cl) and 1.1×10–3 (G K) S·cm–2.Acetate (40mM) stimulated Na+ fluxes (8.5–9.9 Eq·cm–2·h–1) and Na-linked water fluxes (27–44 l·cm–2·h–1). Increased coupling ratios (2.9–4.6 l·Eq–1) and other data indicate that these effects may be due to increased osmotic permeabilities of barriers involved in the Na-linked water transfer pathway.Low-Na+ maintenance enhanced EPD (49–69 mV, serosa positive) and all net fluxes:J Na (6.8–11.6);J K (–3.2––4.3);J Cl (4.3–5.6 Eq·cm serosal area–2·h–1);J v (28–43 l·cm–2·h–1) (mucosal-serosal fluxes positive).Acute aldosterone enhancedJ Na (10.8–14.0 Eq·cm–2·h–1) and EPD (54–66 mV) by 3 h after injection, but had no effect on the Na-linked components ofJ K orJ Cl.Abbreviations ECPD, EPD Electrochemical or electrical potential difference - G Cl ,G K ionic conductances (Cl, K+) - J v ,J ion net volume or ion flux rate, mucosa-serosa positive;P d (Cl) diffusive permeability coefficient (of Cl) - SEDM standard error of difference between means  相似文献   

6.
The stability and, consequently, the lifetime of immobilized enzymes (IME) are important factors in practical applications of IME, especially so far as design and operation of the enzyme reactors are concerned. In this paper a model is presented which describes the effect of intraparticle diffusion on time stability behaviour of IME, and which has been verified experimentally by the two-substrate enzymic reaction. As a model reaction the ethanol oxidation catalysed by immobilized yeast alcohol dehydrogenase was chosen. The reaction was performed in the batch-recycle reactor at 303 K and pH-value 8.9, under the conditions of high ethanol concentration and low coenzyme (NAD+) concentration, so that NAD+ was the limiting substrate. The values of the apparent and intrinsic deactivation constant as well as the apparent relative lifetime of the enzyme were calculated.The results show that the diffusional resistance influences the time stability of the IME catalyst and that IME appears to be more stabilized under the larger diffusion resistance.List of Symbols C A, CB, CE mol · m–3 concentration of coenzyme NAD+, ethanol and enzyme, respectively - C p mol · m3 concentration of reaction product NADH - d p mm particle diameter - D eff m2 · s–1 effective volume diffusivity of NAD+ within porous matrix - k d s–1 intrinsic deactivation constant - K A, KA, KB mol · m–3 kinetic constant defined by Eq. (1) - K A x mol · m–3 kinetic constant defined by Eq. (5) - r A mol · m–3 · s–1 intrinsic reaction rate - R m particle radius - R v mol · m–3 · s–1 observed reaction rate per unit volume of immobilized enzyme - t E s enzyme deactivation time - t r s reaction time - V mol · m–3 · s–1 maximum reaction rate in Eq. (1) - V x mol · m–3 · s–1 parameter defined by Eq. (4) - V f m3 total volume of fluid in reactor - w s kg mass of immobilized enzyme bed - factor defined by Eqs. (19) and (20) - kg · m–3 density of immobilized enzyme bed - unstableness factor - effectiveness factor - Thiele modulus - relative half-lifetime of immobilized enzyme Index o values obtained with fresh immobilized enzyme  相似文献   

7.
Summary Respiratory gas exchange and blood respiratory properties have been studied in the East-African tree frogChiromantis petersi. This frog is unusually xerophilous, occupies dry habitats and prefers body temperatures near 40°C and direct solar exposure. Total O2 uptake was low at 81 l O2·g–1·h–1±19.0 (SD) at 25°C increasing to 253.5 l O2·g–1·h–1±94.8 (SD) at 40°C giving aQ 10 value of 2.1. Skin O2 uptake at 25°C was 38.5% of total. The gas exchange ratio was 0.71 for whole body gas exchange, 0.61 for the lungs and 1.02 for the skin at 25°C.Blood O2 affinity was low with aP 50 of 47.5 mmHg at 25°C and pH 7.65. Then H-value at 25°C increased from 2.7 aroundP 50 to 5.0 at O2 saturations exceeding 70–80%. Surprisingly, blood O2 affinity was nearly insensitive to temperature expressed by a H value of ±1.0 kcal·mole between 25 and 40°C.The adaptive significance of the low O2 affinity, the increase ofn H with O2 saturation and the temperature insensitive O2-Hb binding is discussed in relation to the high and fluctuating body temperatures ofChiromantis.  相似文献   

8.
Endogenous and maximum respiration rates of nine purple sulfur bacterial strains were determined. Endogenous rates were below 10 nmol O2 · (mg protein · min)-1 for sulfur-free cells and 15–35 nmol O2 · (mg protein · min)-1 for cells containg intracellular sulfur globules. With sulfide as electron-donating substrate respiration rates were considerably higher than with thiosulfate. Maximum respiration rates of Thiocystis violacea 2711 and Thiorhodovibrio winogradskyi SSP1 (254.8 and 264.2 nmol O2 · (mg protein · min)-1, respectively) are similar to those of aerobic bacteria. Biphasic respiration curves were obtained for sulfur-free cells of Thiocystis violacea 2711 and Chromatium vinosum 2811. In Thiocystis violacea the rapid and incomplete oxidation of thiosulfate was five times faster than the oxidation of stored sulfur. A high affinity of the respiratoty system for oxygen (K m =0.3–0.9 M O2, V max=260 nmol O2 · (mg protein · min)-1 with sulfide as substrate, K m =0.6–2.4 M O2, V max=14–40 nmol O2 · (mg protein · min)-1 with thiosulfate as substrate), for sulfide (K m =0.47 M, V max=650 nmol H2S · (mg protein × min)-1, and for thiosulfate (K m =5–6 M, V max =24–72 nmol S2O 3 2- · (mg protein · min)-1 was obtained for different strains. Respiration of Thiocystis violacea was inhibited by very low concentrations of NaCN (K i =1.7 M) while CO concentrations of up to 300 M were not inhibitory. The capacity for chemotrophic growth of six species was studied in continuous culture at oxygen concentrations of 11 to 67 M. Thiocystis violacea 2711, Amoebobacter roseus 6611, Thiocapsa roseopersicina 6311 and Thiorhodovibrio winogradskyi SSP1 were able to grow chemotrophically with thiosulfate/acetate or sulfide/acetate. Chromatium vinosum 2811 and Amoebobacter purpureus ML1 failed to grow under these conditions. During shift from phototrophic to chemotrophic conditions intracellular sulfur and carbohydrate accumulated transiently inside the cells. During chemotrophic growth bacteriochlorophyll a was below the detection limit.  相似文献   

9.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

10.
Cross-flow filtration (CFF) has been investigated as a method of separating filamentously growing fungal cells and purifying the polysaccharide produced. The effects of transmembrane pressure, module geometry (e.g. channel height or tube diameter), tangential feed velocity and cell as well as polysaccharide concentration are discussed. Apart from these experiments, influences by the recirculation pump used are shown.List of Symbols b f fouling index - b factor refering to the behaviour of the sublayer - C kg · m–3 concentration - C g kg · m–3 solute concentration at the membrane - C b kg · m–3 solute concentration in the bulk phase - D s-1 shear rate - k m · s–1 mass-transfer coefficient - K mPa · sn consistency index - n flow behaviour index - P w m3 · s–1 · m–2 rate of permeation - P w1 m3 · s–1 · m–2 rate of permeation at 1 minute - P w m3 · s–1 · m–2 rate of permeation at the beginning - p Pa pressure - Q m2 largest cross-section of a particle - q m2 smallest cross-section of a particle - Re Reynolds number - R f –1 fouling resistance - R m m–1 membrane resistance - t s time - w m · s–1 tangential feed velocity Greek Symbols friction factor - pTM Pa transmembrane pressure - mPa · s shear viscosity - sp specific viscosity (rel. increase of viscosity sp=rel-1) - [] m3· kg–1 intrinsic viscosity - w m2 · s–1 kinematic viscosity - kg · m–3 density Indices b bulk - cell cells - f fouling - g gelling - PS polysaccharide - rel relative - sp specific - w water  相似文献   

11.
Rolipram (4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone) represents a new class of specific low Km cAMP phosphodiesterase (PDE) inhibitors. This compound enhances basal, hormone- and forskolin-elicited cAMP accumulation in prolactin (PRL) producing rat pituitary adenoma (GH4C1) cells in culture (ED50=5·10–8 M). This effect is due to a selective inhibition of the low Km cAMP PDE (type III), since neither basal nor hormone-stimulated adenylate cyclase (AC) nor the Ca2+/calmodulin-dependent PDE were affected by rolipram. The drug enhanced vasoactive intestinal polypeptide (VIP)-stimulated PRL-secretion, while thyroliberin (TRH)- and 12-0-tetradecanoyl phorbol-13-acetate (TPA)-elicited PRL egress were slightly reduced indicating a cAMP-mediated reduction of protein kinase C (PK-C) mediated PRL release. Interestingly, inhibition of PRL secretion by somatostatin (SRIH) was completely suppressed suggesting cAMP-mediated inactivation of some GTP-binding protein(s) of the i family (G i2 orG k). Rolipram did not affect phosphoinositide metabolism (i.e. IP3 accumulation), neither acutely nor after long term administration. Rolipram, like the cAMP PDE inhibitor Ro 20–1724, did not influence AC and PDE I, but dose-dependently inhibited PDE III activity.Long term incubation of GH4C1 cells with rolipram in the presence of noradrenaline (NA) exerted a marginal decrease of -receptor number, AC activation and cAMP accumulation, while Ro 20–1724 brought about a marked down-regulation and desensitization of the AC complex.In summary, rolipram selectively interacts with PDE III in rat pituitary adenoma cells in culture and does not result in -adrenoceptor AC downregulation. These features are not shared by the other drugs tested.  相似文献   

12.
Summary Elastically-suspended microelectrodes were used in the vascularly isolated blood-perfused carotid body of fetal and newborn lambs as well as of 6–7-day-old lambs to measure local blood flow velocities by means of hydrogen clearance. Fetal sheep (n=9) carotid bodies elicited mean local blood velocity values between 0.008 and 0.11 cm·s–1, whereas newborn lamb carotid bodies (n=7) showed values between 0.008 and 0.067 cm·s–1 at a perfusion pressure range between 30 and 150 mmHg. The 6–7-day-old lamb carotid bodies (n=5) were characterized by values of 0.003 and 0.049 cm·s–1 over the same perfusion pressure range. Fetal carotid body values were statistically significantly higher than the values of the 6–7-day-old lamb carotid bodies, whereas the newborn carotid body values showed no significant difference to both other groups. The flow velocity/perfusion pressure relationship peaked at perfusion pressure values between 100 and 150 mmHg in all groups with a reduced steepness in the lamb carotid body. It is concluded that local blood flow velocities in the carotid body are similar to that in other organs, and that after birth local blood flow velocities in the carotid body decrease during the first week of life, probably induced by vasoconstriction, changed blood gas values, and/or increasing shunt flow.Abbreviations significance level - D diffusion coefficient - i.v. intravenous - n number of experiments - PCO 2 carbon dioxide partial pressure - pH negative logarithm of hydrogen ion concentration - PH 2 hydrogen partial pressure - Po PH2 with perfusion - P PH2 without perfusion - PO 2 oxygen partial pressure - PP perfusion pressure - r radius  相似文献   

13.
The hydraulic conductivities of excised whole root systems of wheat (Triticum aestivum L. cv. Atou) and of single excised roots of wheat and maize (Zea mays L. cv. Passat) were measured using an osmotically induced back-flow technique. Ninety minutes after excision the values for single excised roots ranged from 1.6·10-8 to 5.5·10-8 m·s-1·MPa-1 in wheat and from 0.9·10-8 to 4.8·10-8 m·s-1·MPa-1 in maize. The main source of variation was a decrease in the value as root length increased. The hydraulic conductivities of whole root systems, but not of single excised roots, were smaller 15 h after excision. This was not caused by occlusion of the xylem at the cut end of the coleoptile. The hydraulic conductivities of epidermal, cortical and endodermal cells were measured using a pressure probe. Epidermal and cortical cells of both wheat and maize roots gave mean values of 1.2·10-7 m·s-1·MPa-1 but in endodermal cells (measured only in wheat) the mean value was 0.5·10-7 m·s-1·MPa-1. The cellular hydraulic conductivities were used to calculate the root hydraulic conductivities expected if water flow across the root was via transcellular (vacuole-to-vacuole), apoplasmic or symplasmic pathways. The results indicate that, in freshly excised roots, the bulk of water flow is unlikely to be via the transcellular pathway. This is in contrast to our previous conclusion (H. Jones, A.D. Tomos, R.A. Leigh and R.G. Wyn Jones 1983, Planta 158, 230–236) which was based on results obtained with whole root systems of wheat measured 14–15 h after excision and which probably gave artefactually low values for root hydraulic conductivity. It is now concluded that, near the root tip, water flow could be through a symplasmic pathway in which the only substantial resistances to water flow are provided by the outer epidermal and the inner endodermal plasma membranes. Further from the tip, the measured hydraulic conductivities of the roots are consistent with flow either through the symplasmic or apoplasmic pathways.Symbols L p, cell cell hydraulic conductivity - L p, root root hydraulic conductivity - L p, root calculated root hydraulic conductivity - root reflection coefficient  相似文献   

14.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

15.
The ecology of Lake Nakuru (Kenya)   总被引:11,自引:0,他引:11  
E. Vareschi 《Oecologia》1982,55(1):81-101
Summary Abiotic factors, standing crop and photosynthetic production were studied in the equatorial alkaline-saline closed-basin Lake Nakuru (cond. 10,000–160,000 S). Meteorological conditions and abiotic factors offer suppositions for a high primary productivity: mean solar radiation is 450–550 kerg·cm-2·s-1, with little seasonal variation, regular winds circulate the lake every day and nutrient concentrations are usually high (>100 g P–PO4·l-1). Oxygen concentrations near sediments were <1 gO2·m-3 for at least 6 h·d-1 in 1972/73, resulting in a release of 45 mg P–PO4·m-2·d-1. Attenuation coefficients vary from 3.6–16.5 according to algal densities and mean depth from 0–400 cm. Algal biomass was 200 g·m-3 (d.w.) in 1972/73, due to a lasting Spirulina platensis bloom (98.5% of algal biomass). In 1974 algal biomass suddenly dropped to 50 g·m-3 (d.w.). Spirulina and several consumer organisms almost vanished, but coccoid cyanobacteria, Anabaenopsis and diatoms increased. Several causes for this change in ecosystem structure are discussed. The use of the light/dark bottle method to measure photosynthetic production in eutrophic alkaline lakes is discussed and relevant experiments were done. Oxygen tensions of 2–35 gO2·m-3 do not influence primary production rates. Net photosynthetic rates (mgO2·m-3·h-1; photosynthetic quotient=1.18) reached 12–17.7 in 1972/73 and 2–3 in 1974, but vertically integrated rates were only 1–1.4 in 1972/73 and 0.8 in 1974, and daily net photosynthetic rates (gO2·m-3·24 h-1) 3.5 in 1972/73 and 1 in 1974. 50% of areal rates were produced within the 10 most productive cm of the depth profile. The disproportion between high algal standing crops and relatively low production rates is due to self-shading of the algae, reducing the euphotic zone to 35 cm in 1972/73 and 77 cm in 1974. Efficiency of light utilization is 0.4–2%, varying with time of day and phytoplankton density. In situ efficiencies show an inverse relationship to light intensities. Photosynthetic rates of L. Nakuru remain within the range of other African lakes (0.1–3 gO2·m-2·h-1). The relation of O2 produced/Chl a of the euphotic zone is 50% lower then in tropical African freshwater lakes and conforms to lakes of temperate regions.  相似文献   

16.
Summary Amounts and temporal changes of the release of the tracer ions K+ (86Rb+),22Na+, and36Cl as well as of H+ in the course of action potentials inAcetabularia have been recorded. New results and model calculations confirm in quantitative terms the involvement of three major ion transport systemsX in the plasmalemma: Cl pumps, K+ channels, and Cl channels (which are marked in the following by the prefixes,P, K andC) with their equilibrium voltages X V e and voltage/time-dependent conductances, which can be described by the following, first approximation. Let the maximum (ohmic) conductance of each of the three populations of transporter species be about the same (P L, KL,C L=1) but voltage gating be different: the pump ( p V e about –200 mV) being inactivated (open,oclosed,c) at positive going transmembrane voltages,V m; the K+ channels (K V e about –100 mV) are inactivated at negative goingV m; and the Cl channels (C V e: around 0 mV), which are normally closed (c) at a restingV m (nearPVe) go through an intermediate open (o) state at more positiveV m before they enter a third shut state (s) in series. Model calculations, in which voltage sensitivities are expressed by the factorf=exp(V mF/(2RT)), simulate, the action potential fairly well with the following parameters (PKco10/f ks–1,PKoc1000·f ks–1,KKco200·f ks–1,Kkoc2/f ks–1,cKco500·f ks–1,CKoc5/f ks–1,CKso0.1/f ks–1,Ckos20·f ks–1). It is also shown that the charge balance for the huge transient Cl efflux, which frequently occurs during an action potential, can be accounted for by the observation of a corresponding release of Na+.  相似文献   

17.
The CO2 gas exchange rates of the Central European perennial understory plantAsarum europaeum L. were measured in late autumn (October 30 to November 30) in its natural habitat day and night.During these measurements the temperature ranged from 0 to 15°C and the absolute air humidity from 3 to 10 mg H2O·1–1. Temperature and absolute air humidity over these ranges did not affect CO2 net assimilation which was determined almost entirely by quantum flux density.CO2 net assimilation was light saturated at about 100 M·m–2·s–1 quantum flux density. The uptake rate at this point was 4.3 mg·dm–2·h–1. The compensation point occurred at approximately 1 M·m–2·s–1.  相似文献   

18.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

19.
Summary A new, sensitive and continuous assay for -glucosidase is described exploiting the different angles of rotation for the substrate maltose and the product glucose. Kinetic experiments revealed a very pronounced product inhibition of -glucosidase fromSaccharomyces carlsbergensis with a Ki of 4.85·10–3 M for glucose.The KM of maltose was found to be 37.8·10–3 M. Taking these values, an integral kinetic curve for the enzymatic hydrolysis of maltose was calculated, which is shown to fit the experimental data.Symbols used k1 (min–1) pseudo first-order rate constant (for enzymatic cleavage) - k2 (min–1) rate constant (for mutarotation reaction) - I, P (mol/1) inhibitor (product) concentration - ki (mmol/1) inhibitor constant - KM (mmol/l) Michaelis constant - [M] 589 30 (degree/m · l/mol) molecular rotation at 30°C and 589 nm - s (mmol/l) substrate concentration - R (mmol/mg · min) reaction rate - Vmax (mmol/mg · min) maximal rate - U (mol/min) activity unit (here at 30°C and pH=6.8) Indices O initial value - max maximal value  相似文献   

20.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号