首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Summary Cell adhesion was studied during primary embryonic induction. The disaggregation rate and reaggregation patterns were analysed in the ectoderm cells of various developing Cynopus gastrulae and neurulae. The neurectoderm cells disaggregated more slowly with gastrulation, and the neural plate cells of early neurula showed a lesser capacity for disaggregation. Although no differences in reaggregation were found between dorsal and ventral ectoderm at the early gastrula stage, there were significant differences between the induced neurectoderm and the non-induced ventral epidermal cells at the late gastrula stage. Neural plate cells of the early neurula stage were seen to form a chain-like reaggregate, but the ventral epidermal cells of the same embryo formed a cluster-like spherical reaggregate. Scanning electron microscope observations of reaggregates also showed significant differences in adhesive properties between induced neurectoderm and non-induced epidermal cells. The adhesion field of the induced neurectoderm cells was smooth, differing from the distinct ridges of the non-induced epidermal cells. These results suggest that changes in the cell adhesion system, resulting in the formation of a columnar cell shape, may occur immediately after a neural-inducing action.  相似文献   

3.
A P Otte  R T Moon 《Cell》1992,68(6):1021-1029
The restricted ability of embryonic tissue to respond to inductive signals is controlled by a poorly understood phenomenon, termed competence. In Xenopus, dorsal ectoderm is more competent than ventral ectoderm to become induced to neural tissue. We tested whether the Xenopus protein kinase C (PKC) isozymes alpha and beta have a role in neural induction and competence. We found that PKC alpha is predominantly localized in dorsal ectoderm, whereas PKC beta is uniformly distributed. Overexpression of PKC beta conveys a higher propensity for neural differentiation to both dorsal and ventral ectoderm, but their difference in competence remains. However, ectopic expression of PKC alpha elevates the level of neural competence of ventral ectoderm to that of dorsal ectoderm. These data indicate that different PKC isozymes have distinct roles in mediating both neural induction and competence.  相似文献   

4.
It is still controversial whether cranial placodes and neural crest cells arise from a common precursor at the neural plate border or whether placodes arise from non-neural ectoderm and neural crest from neural ectoderm. Using tissue grafting in embryos of Xenopus laevis, we show here that the competence for induction of neural plate, neural plate border and neural crest markers is confined to neural ectoderm, whereas competence for induction of panplacodal markers is confined to non-neural ectoderm. This differential distribution of competence is established during gastrulation paralleling the dorsal restriction of neural competence. We further show that Dlx3 and GATA2 are required cell-autonomously for panplacodal and epidermal marker expression in the non-neural ectoderm, while ectopic expression of Dlx3 or GATA2 in the neural plate suppresses neural plate, border and crest markers. Overexpression of Dlx3 (but not GATA2) in the neural plate is sufficient to induce different non-neural markers in a signaling-dependent manner, with epidermal markers being induced in the presence, and panplacodal markers in the absence, of BMP signaling. Taken together, these findings demonstrate a non-neural versus neural origin of placodes and neural crest, respectively, strongly implicate Dlx3 in the regulation of non-neural competence, and show that GATA2 contributes to non-neural competence but is not sufficient to promote it ectopically.  相似文献   

5.
The FGF pathway regulates a variety of developmental processes in animals through activation and/or repression of numerous target genes. Here we have identified a Xenopus homolog of potassium channel tetramerization domain containing 15 (KCTD15) as an FGF-repressed gene. Kctd15 expression is first detected at the gastrula stage and gradually increases until the tadpole stage. Whole-mount in situ hybridization reveals that the spatial expression of kctd15 is tightly regulated during early embryogenesis. While kctd15 is uniformly expressed throughout the presumptive ectoderm at the early gastrula stage, its expression becomes restricted to the non-neural ectoderm and is excluded from the neural plate at the early neurula stage. At the mid-neurula stage, kctd15 shows a more restricted distribution pattern in regions that are located at the anterior, lateral or medial edge of the neural fold, including the preplacodal ectoderm, the craniofacial neural crest and the prospective roof plate. At the tailbud stage, kctd15 expression is mainly detected in neural crest- or placode-derived tissues that are located around the eye, including the mandibular arch, trigeminal ganglia and the olfactory placode. FGF represses kctd15 expression in ectodermal explants, and the inhibition of FGF receptor with a chemical compound dramatically expands the region expressing kctd15 in whole embryos. Dorsal depletion of kctd15 in Xenopus embryos leads to bent axes with reduced head structures, defective eyes and abnormal somites, while ventral depletion causes defects in ventral and caudal morphologies. These results suggest that kctd15 is an FGF-repressed ectodermal gene required for both dorsal and ventral development.  相似文献   

6.
Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural crest lineages affect only nearby ectoderm cells.  相似文献   

7.
8.
9.
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.  相似文献   

10.
The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.  相似文献   

11.
The ectoderm of early Xenopus gastrula is competent to become induced to neural tissue, but dorsal ectoderm is more neural competent than ventral ectoderm. It is a tenable, but as yet untested possibility that the higher neural competence of dorsal gastrula ectoderm is dependent on the presence of the dorsal mesoderm. To test this hypothesis we overexpressed Xwnt-8 in order to ectopically induce dorsal mesoderm in the ventral side of the embryo. We found that this elevated the level of neural competence of ventral ectoderm to that of dorsal ectoderm. The effect of Xwnt-8 on neural competence of ventral ectoderm was strictly correlated with its ability to enhance the amount of dorsal structures. The data indicate that the presence of dorsal mesoderm is a prerequisite for establishing the differences in neural competence between gastrula dorsal and ventral ectoderm.  相似文献   

12.
We have analyzed the development in vitro of individual precursor cells from the presumptive truncal segmental ectoderm of the Drosophila embryo to study the intrinsic component in the determination of cell fate. For each cultured cell, the original position within as well as the developmental stage of the donor embryo were known. Cells removed from the ventral neurogenic region develop neural clones. Cells from the dorsal ectoderm and from the dorsalmost part of the ventral neurogenic ectoderm develop epidermal clones. These two classes of clones differ with respect to their division pattern, adhesiveness, cell morphologies and the expression of cell-specific markers. Mixed neural/epidermal clones were obtained from a fraction of precursors at almost all dorsoventral sites. We conclude that, at the onset of gastrulation, precursor cells of the truncal segmental ectoderm already have the capability to develop as either neuroblasts or epidermoblasts in the absence of further cell interactions. At the same time, positional cues distributed along the dorsoventral axis equip precursors with intrinsic preferences towards the neural or epidermal fate, thus defining a prepattern of high neurogenic preferences ventrally, and high epidermogenic preferences dorsally. It is likely that this prepattern is involved in defining the extent of the ventral neurogenic and dorsal epidermogenic regions of the ectoderm. The roles of intrinsic capabilities versus extrinsic influences in the regulation of the characteristic pattern of segregation of the two lineages are discussed.  相似文献   

13.
14.
Inductive interactions between different cell layers have an extremely important role in early embryogenesis. One of the most intensively studied and best characterised of these is the induction of neural tissue from ectodermal cells by the dorsal mesoderm. The competence of ectodermal cells to respond to neural induction varies according to dorsal-ventral position; with dorsal ectoderm (much of which forms the neural plate) having a far higher competence. Here we show that overexpression of the nucleotide exchange factor lfc increases ectodermal competence for neural induction as well as the amount of neural tissue in the whole embryo. Lfc is expressed pan ectodermally soon after gastrulation and may respond to an early determinant of dorsal ectoderm.  相似文献   

15.
The induction of morphologically observable neural structures occurs as the result of tissue interactions between chordamesoderm and overlying ectoderm beginning at gastrulation. Since the future dorsal, and hence neural, side of the embryo is determined around the time of fertilization, we questioned whether the presumptive neural epithelium might have received some developmental instructions prior to contact with the migrating chordamesoderm. Epi 1, a cell surface antigen present only on epidermal epithelium was used as a marker to determine when epithelial cells have been programmed to express (or not express) this epidermal-specific molecule. We find that ligated animal halves of precleavage embryos already contain all the information necessary for expression of Epi 1 at the appropriate developmental time (early neurula). By at least the eight-celled stage, the epithelial cells derived from ventral animal blastomeres are much better at expressing the Epi 1 antigen than their dorsal counterparts. We suggest that the mechanisms responsible for expression of the Epi 1 antigen are localized within the animal hemisphere prior to the onset of cleavage. By the third cleavage division, dorsal animal cells appear to have received information which inhibits the subsequent expression of this epidermal antigen.  相似文献   

16.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

17.
The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurula stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus.  相似文献   

18.
Two-dimensional gel electrophoresis was used to analyze protein synthesis in relation to neural and epidermal differentiation in Cynops pyrrhogaster embryo. Various regions of embryos at different developmental stages, from late morula to early neurula stages, were excised, radiolabelled with 35S-methionine, and the pattern of protein synthesis were compared. The following four types of protein spots were observed: (1) six proteins synthesized characteristically in the epidermal region of the embryo after gastrulation, (2) two proteins synthesized in both epidermal and endodermal regions, but not in other regions, after gastrulation, (3) a protein first detected at early blastula stage, of which expression was nearly constant in presumptive epidermis region but declined in the other regions, (4) the candidate for neural plate specific protein synthesized at a very high level in ectoderm explants treated with concanavalin A, a substance which evokes neural induction.  相似文献   

19.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号