首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Fenna-Matthews-Olson (FMO)-protein and the FMO-reaction center (RC) core complex from the green sulfur bacterium Chlorobium tepidum were examined at 6 K by absorption and fluorescence spectroscopy. The absorption spectrum of the RC core complex was obtained by a subtraction method and found to have fiye peaks in the QY region, at 797, 808, 818, 834 and 837 nm. The efficiency of energy transfer from carotenoid to bacteriochlorophyll a in the RC core complex was 23% at 6 K, and from the FMO-protein to the core it was 35%. Energy transfer from the FMO-protein to the core complex was also measured in isolated membranes of Prosthecochloris aestuarii from the action spectra of charge separation. Again, a low efficiency of energy transfer was obtained, both at 6 K and at room temperature.Abbreviations BChl- bacteriochlorophyll - P840- primary electron donor - RC- reaction center - FMO-protein- Fenna-Matthews-Olson-protein  相似文献   

2.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

3.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

4.
To obtain information on the structural and functional role of highly conserved amino acid residues in the B870 alpha and beta light-harvesting polypeptides of Rhodobacter capsulatus, site-directed mutagenesis was performed. 18 mutants with single amino acid substitutions at nine different positions in the B870 antenna polypeptides were prepared in a B800-850-lacking strain. The characterization of the resulting phenotypes was based on a quantification of the core-complex elements (reaction center, light-harvesting polypeptides, bacteriochlorophyll a and carotenoid) and the core-complex spectral characteristics (absorption maximum, absorption coefficient and fluorescence intensity). These data generally showed that strong structural effects were caused by the amino acid substitutions. Thus, the three tryptophan exchanges at the position alpha 8 resulted in either the absence of a core complex (alpha Trp8----Leu), the absence of the core antenna (alpha Trp8----Ala) or a reduction in the carotenoid content (alpha Trp8----Tyr). Likewise, the mutants alpha Pro13Gly (i.e. alpha Pro13----Gly), beta Gly10Val and alpha Phe23Ala demonstrated an abnormal protein/pigment ratio in the core antenna, while a drastically reduced antenna size resulted from the amino acid exchange beta Arg45Asp. In contrast to the structural effects, the absorption maxima and the fluorescence intensities of the mutant antennae differed only slightly from the wild type. The strongest blue shift of the bacteriochlorophyll a (8-11 nm) was induced by substitutions of the Trp at position alpha 43 (alpha Trp43----Ala, Leu or Tyr). Contrary to the other spectral effects, the absorption coefficient of bacteriochlorophyll a was strongly influenced by the amino acid substitutions and varied by 1.6-times less (beta Arg45Asp) and 1.3-times greater (alpha Phe25Ala) than normal. The antenna-free mutant, alpha Trp8Ala, yielded a high rate of B800-850 revertants during phototrophic growth, indicating a direct energy transfer from the B800-850 antenna to the reaction center in these strains. Although conditions for growth were generally observed to influence phenotypic expression, the structural as well as spectral effects were demonstrated to differ to the greatest extent between chemotrophically grown and phototrophically grown cells.  相似文献   

5.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7',8',-tetrahydro-psi,psi-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1, 2, 7', 8'-tetrahydro-psi,psi-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

6.
In vivo states and functions of carotenoids in the membranes and the isolated RC-B865 pigment-protein complexes from an aerobic photosynthetic bacterium, Erythrobacter longus, are investigated by means of fluorescence excitation and resonance Raman (RR) spectra. Erythroxanthin sulfate, a dominant carotenoid species in the membranes (>70%), is found not to transfer the absorbed light energy to bacteriochlorophyll (Bchl), and its RR spectra are similar between the in vivo and in vitro states. These observations indicate that erythroxanthin sulfate does not interact with either Bchl or proteins in the membranes, and suggest that its function may be limited to photoprotection by quenching the harmful singlet oxygen. On the other hand, two other carotenoid species contained in the isolated RC-B865 complexes, zeaxanthin and bacteriorubixanthinal, have a high efficiency of energy transfer to Bchl (88±5%). The RR spectra of these two carotenoids, each of which can be selectively obtained by choosing the excitation wavelength, show some characteristics of interactions with proteins or Bchl.Abbreviations Bchl bacteriochlorophyll a - FWHM full width at half maximum - PAGE polyacrylamide gel electrophoresis - RC reaction center - RR resonance Raman - SDS sodium dodecyl sulfate  相似文献   

7.
The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

8.
Triplet state electron paramagnetic resonance (EPR) experiments have been carried out at X-band on Rb. sphaeroides R-26 reaction centers that have been reconstituted with the carotenoid, spheroidene, and exchanged with 132-OH-Zn-bacteriochlorophyll a and [3-vinyl]-132-OH-bacteriochlorophyll a at the monomeric, accessory bacteriochlorophyll sites BA,B or with pheophytin a at the bacteriopheophytin sites HA,B. The primary donor and carotenoid triplet state EPR signals in the temperature range 95–150 K are compared and contrasted with those from native Rb. sphaeroides wild type and Rb. sphaeroides R-26 reaction centers reconstituted with spheroidene. The temperature dependencies of the EPR signals are strikingly different for the various samples. The data prove that triplet energy transfer from the primary donor to the carotenoid is mediated by the monomeric, BChlB molecule. Furthermore, the data show that triplet energy transfer from the primary donor to the carotenoid is an activated process, the efficiency of which correlates with the estimated triplet state energies of the modified pigments.Abbreviations BChl bacteriochlorophyll - BPhe bacteriopheophytin - Chl chlorophyll - EPR electron paramagnetic resonance - LDAO lauryl-dimethylamine-N-oxide - Phe pheophytin  相似文献   

9.
The low temperature EPR signal of the excited triplet state of bacteriochlorophyll has been quantitatively studied in reaction centers from Rhodopseudomonas spheroides (carotenoid free R 26 mutant). Using laser flash excitation the light saturation curve of the triplet signal has been compared with that of the free-radical formation due to photooxidation of P870 under identical optical conditions. This comparison shows that the quantum yield of triplet formation is nearly the same as that of the photochemical bleaching of bacteriochlorophyll.  相似文献   

10.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

11.
12.
Previously, the spatial arrangement of the carotenoid and bacteriochlorophyll molecules in the peripheral light-harvesting (LH2) complex from Rhodopseudomonas acidophila strain 10050 has been determined at high resolution. Here, we have time resolved the energy transfer steps that occur between the carotenoid's initial excited state and the lowest energy group of bacteriochlorophyll molecules in LH2. These kinetic data, together with the existing structural information, lay the foundation for understanding the detailed mechanisms of energy transfer involved in this fundamental, early reaction in photosynthesis. Remarkably, energy transfer from the rhodopin glucoside S(2) state, which has an intrinsic lifetime of approximately 120 fs, is by far the dominant pathway, with only a minor contribution from the longer-lived S(1) state.  相似文献   

13.
The effects of ultraviolet radiation (up to 0.6 J/cm2) on the absorption spectra and electron transfer in dehydrated films of photosynthetic reaction centers from purple bacteria Rb. sphaeroides and hybrid structures that included reaction centers, quantum dots, and protein structure stabilizers (trehalose, polyvinyl alcohol, and methylcellulose) have been studied. Ultraviolet irradiation led to partial destruction of bacteriochlorophyll molecules (pheophytinization) and the reaction center carotenoid. In this case, ultraviolet irradiation did not exert a significant effect on electron transfer between the photoactive bacteriochlorophyll and quinone electron acceptors. The incorporation of reaction centers into organic matrices reduced pheophytinization. Trehalose was the most efficient in reducing the damage evoked by ultraviolet irradiation of the carotenoid molecule. Hybrid films that contained quantum dots were resistant to pheophytinization upon ultraviolet irradiation, but the presence of quantum dots did not affect the processes of carotenoid destruction upon exposure to ultraviolet radiation. Ultraviolet radiation had an insignificant effect on the characteristics of quantum dots (the fluorescence lifetime).  相似文献   

14.
Emission spectra of bacteriochlorophyll a fluorescence and absorption spectra of various purple bacteria were measured at temperatures between 295 and 4 K. For Rhodospirillum rubrum the relative yield of photochemistry was measured in the same temperature region. In agreement with earlier results, sharpening and shifts of absorption bands were observed upon cooling to 77 K. Below 77 K further sharpening occurred. In all species an absorption band was observed at 751-757 nm. The position of this band and its amplitude relative to the concentration of reaction centers indicate that this band is due to reaction center bacteriopheophytin. The main infrared absorption band of Rhodopseudomonas sphaeroides strain R26 is resolved in two bands at low temperature, which may suggest that there are two pigment-protein complexes in this species. Emission bands, like the absorption bands, shifted and sharpened upon cooling. The fluorescence yield remained constant or even decreased in some species between room temperature and 120 K, but showed an increased below 120 K. This increase was most pronounced in species, such as R. rubrum, which showed single banded emission spectra. In Chromatium vinosum three (835, 893 and 934 nm) and in Rps. sphaeroides two (888 and 909 nm) emission bands were observed at low temperature. The temperature dependence of the amplitudes of the short wavelength bands indicated the absence of a thermal equilibrium for the excitation energy distribution in C. vinosum and Rps. sphaeroides. In all species the increased in the yield was larger when all reaction centers were photochemically active than when the reaction centers were closed. In R. rubrum the increase in the fluorescence yield was accompanied by a decrease of the quantum yield of charge separation upon excitation of the antenna but not of the reaction center chlorophyll. Calculation of the F?rster resonance integral at various temperatures indicated that the increase in fluorescence yield and the decrease in the yield of photochemistry may be due to a decrease in the rate of energy transfer between antenna bacteriochlorophyll molecules. The energy transfer from carotenoids to bacteriochlorophyll was independent of the temperature in all species examined. The results are discussed in terms of existing models for energy transfer in the antenna pigment system.  相似文献   

15.
Light-induced absorbance changes were measured at temperatures between --30 and --55 degrees C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the "primary" to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+. A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artifical donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

16.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7′,8′-tetrahydro-ψ,ψ-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1,2,7′,8′-tetrahydro-ψ,ψ-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

17.
The recently discovered gene transfer system of Rhodopseudomonas capsulata was used to construct a genetic map of a region concerned with bacteriochlorophyll and carotenoid production. Mutants blocked in the biosynthesis of these compounds were isolated, and each was characterized on the basis of pigments accumulated during growth under low pO2. One-point, two-point, three-point, and ratio test crosses were performed between various mutant strains, and the results were amenable to conventional genetic analyses. A mapping function was found that related cotransfer frequency to map distance. Seven clusters of mutations, five affecting carotenoid and two affecting bacteriochlorophyll biosynthesis, were arranged in one linkage group. Each cluster of mutations is thought to represent a gene. The length of the mapped region is estimated to be less than 1% of the genome. Cotransfer is observed between markers separated by about 5 to 10 genes.  相似文献   

18.
The protection action of carotenoids against irreversible photodestruction was discovered in photosynthetic bacteria by Stanieda and coworkers. In green plant material it was found by Wolff and Witt (1969) Z. Naturforsch, 24b, 1031-1037 and (1972) Proc. 2nd. Int. Congr. Photosynthesis Res. Stresa (Forti, G., Avron, M. and Melandri, A., eds.), Vol. 2, pp. 931-936, Dr. W. Junk, N. V. Publ. The Hague) that the formation of special carotenoid triplet states (via very rapid energy transfer from excited chlorophylls) and their fast radiationless decay in tau1/2 approximately 3 microns is at least one mechanism for the protective action of carotenoids to irreversible photooxidation of the chlorophylls. Hence, it is anticipated that the same mechanism might be realized also in bacteria. The present study gives evidence for such a "triplet valve" to be established also in bacteria. This conclusion was derived from the following observations: 1. The light-induced difference spectrum shows a bleaching of a carotenoid at three characteristic wavelength between 400 and 500 nm. A positive peak around 533 nm indicates the formation of a carotenoid triplet state. 2. The absorption changes can be induced by red light which excites only bacteriochlorophyll. This indicates an energy transfer from bacteriochlorophyll to carotenoids. 3. The light-induced carotenoid triplets decay radiationless in 3 microns in air-saturated aqueous suspensions of the chromatophores. 4. The carotenoid triplet formation occurs only at actinic flash intensities where the photosynthesis becomes saturated. 5. Addition of dithionite, which blocks photosynthesis, markedly increases the extent of carotenoid triplet formation. The different types of exciton migration within the photosynthetic unit are discussed, especially the routes leading to the dissipation of excess excitation energy.  相似文献   

19.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


20.
《BBA》1986,849(3):316-324
The formation and decay of antenna-excited states and the primary charge separation in membranes of the green photosynthetic bacterium Chloroflexus aurantiacus were studied by means of picosecond absorbance difference spectroscopy. After chemical oxidation of the primary electron donor, a 35 ps excitation pulse at 532 nm produced singlet- and triplet-excited states of carotenoid and of bacteriochlorophyll a. Excitation of bacteriochlorophyll a caused a bleaching of its Qy absorption band and induced a blue shift of several neighboring bacteriochlorophyll molecules. The singlet-excited state decayed biphasically with lifetimes of about 200 ps and 1.2 ns. A decrease in the lifetime at increasing flash intensity was attributed to singlet-singlet annihilation. In the presence of active reaction centers also the primary-charge separation and secondary electron transfer were observed. The charge separation consisted of the transfer of an electron from the primary donor, P-865, to the primary-acceptor complex of bacteriopheophytin a and bacteriochlorophyll a. Electron transfer to a secondary acceptor occurred with a time constant of 400 ± 50 ps, which is about 30% longer than had been observed with isolated reaction centers (Kirmaier, C., Holten, D., Mancino, L.J. and Blankenship, R.E. (1984) Biochim. Biophys. Acta 765, 138–146). When this secondary acceptor was prereduced chemically, the lifetime of the primary radical pair increased to 10 ns or more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号