首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
层状双金属氢氧化物作为一种新型无机纳米载体材料,具有独特优势,近年来其在各类药物传递系统中的应用已成为研究热点。介绍层状双金属氢氧化物的制备与修饰,分类综述其在不同药物传递系统中的应用研究。  相似文献   

2.
Ni/Al-layered double hydroxides (Ni-LDHs) and Ni/Al-sodium dodecyl sulfonate layered double hydroxide nanocomposites (Ni-SDS-LDHs) with a molar ratio of Ni:Al (4:1) have been prepared by a co-precipitation (or salt-base) method. Their structures were determined using Powder X-Ray Diffractometer (PXRD) and the spectra showed that basal spacings for Ni-LDHs and Ni-SDS-LDHs synthesised were around 8.1?Å and 34.8?Å, respectively. Lipase from Candida rugosa was immobilised onto these advanced materials, by physical adsorption. The activity of immobilised lipase was investigated through esterification of palmitic acid and isopropyl alcohol in hexane. The effects of reaction temperature, thermostability, stability in organic solvent, operational stability, leaching and storage studies of the immobilised lipase were investigated. These biocatalysts exhibited higher activities than the native lipase with an optimum temperature of 40°C. Immobilised lipases showed higher storage stability than native lipase (up to 60 days) and during operational studies at 30°C for 5?h, more than 50% of its activity was retained. Leaching studies showed that physical adsorption is suitable for the attachment of enzymes onto LDHs.  相似文献   

3.
The determination of xanthine has considerable importance in clinical and food quality control. Therefore, in this present work, we developed a novel xanthine biosensor based on immobilization of xanthine oxidase (XnOx) by attractive materials layered double hydroxides (LDHs). Amperometric detection of xanthine was evaluated by holding the modified electrode at 0.55V (versus saturated calomel electrode (SCE)). Due to the special properties of LDHs, such as chemical inertia, mechanical and thermal stability, anionic exchange ability, high porosity and swelling properties, XnOx/LDHs-modified electrode exhibited a developed analytical performance. The biosensor provided a linear response to xanthine over a concentration range of 1 x 10(-6)M to 2 x 10(-4)M with a sensitivity of 220 mAM(-1)cm(-2) and a detection limit of 1x10(-7)M based on S/N=3. In addition, the immobilized XnOx layers have been characterized using atomic force microscopy under both air atmosphere and liquid environment, which exhibited the interesting swelling phenomenon of LDHs. The investigation of inhibition of XnOx by allopurinol was carried out using this XnOx/LDHs-modified electrode. The experimental results indicated that inhibitory effect could be achieved by allopurinol with a quasi-reversible competitive type.  相似文献   

4.
We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μgmL(-1) and 0.3 to 4.0μgmL(-1) with a detection limit 0.6ngmL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.  相似文献   

5.
The oxygen evolution reaction (OER) has aroused extensive interest from materials scientists in the past decade by virtue of its great significance in the energy storage/conversion systems such as water splitting, rechargeable metal–air batteries, carbon dioxide (CO2) reduction, and fuel cells. Among all the materials capable of catalyzing OER, layered double hydroxides (LDHs) stand out as one of the most effective electrocatalysts owing to their compositional and structural flexibility as well as the tenability and the simplicity of their preparation process. For this reason, numerous efforts have been dedicated to adjusting the structure, forming the well‐defined morphology, and developing the preparation methods of LDHs to promote their electrocatalytic performance. In this article, recent advances in the rational design of LDH‐based electrocatalysts toward OER are summarized. Specifically, various tactics for the synthetic methods, as well as structural and composition regulations of LDHs, are further highlighted, followed by a discussion on the influential factors for OER performance. Finally, the remaining challenges to investigate and improve the catalyzing ability of LDH electrocatalysts are stated to indicate possible future development of LDHs.  相似文献   

6.
This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 x 10(-6) to 3 x 10(-3) M with a high sensitivity of 62.6 mA M(-1) cm(-2) and a detection limit of 0.1 muM based on the signal-to-noise ratio of 3.  相似文献   

7.
The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode.  相似文献   

8.
The toxic interaction between 2‐naphthylamine (2‐NA) and herring sperm deoxyribonucleic acid (hs‐DNA) has been thoroughly investigated by UV absorption, fluorescence, and circular dichroism (CD) spectroscopic methods. UV absorption result indicates that 2‐NA may intercalate into the stack base pairs of DNA during the toxic interaction of 2‐NA with DNA. A fluorescence quenching study shows that DNA quenches the intrinsic fluorescence of 2‐NA via a static pathway. The studies on effects of ionic strength and anionic quenching rule out electrostatic and groove bindings as the dominant binding modes. Further studies on denatured DNA fluorescence quenching and thermal melting studies confirm that the dominant binding mode of 2‐NA‐DNA is intercalative binding. A CD spectral study shows that the binding interaction of 2‐NA with DNA leads to the disorganization of the neat double‐helical structure of hs‐DNA. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:279‐285, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21488  相似文献   

9.
Binding of the 58 kDa monomer and 44 kDa alpha beta dimer forms of terminal deoxynucleotidyl transferase to double stranded DNA was demonstrated by gel retardation and tryptophan fluorescence quenching. The dissociation constants and cooperativity parameters were similar to those that have been determined for binding of these two forms of terminal transferase to single stranded DNA. However, the double stranded DNA binding site size of 10 nucleotides was half the size expected. The efficacy of blunt ended DNA as an initiator in the polymerization reaction catalyzed by terminal transferase was demonstrated by radiometric assays and product analyses on agarose gels. The initial reaction kinetics indicated that dGTP but not dATP was added efficiently to a blunt double stranded DNA 3' end. These results are correlated with current models for in vivo terminal transferase function.  相似文献   

10.
Viscosimetric and kinetic results allow one to characterize three modes of DNA binding in the ellipticine series: (1) Ellipticine and its 9 methoxy derivative, which present maximal DNA lengthening properties and bind DNA through a single step mechanism, can be considered as pure intercalators. (2) Ellipticinium derivatives and short-chain substituted oxazolopyridocarbazoles, which present intermediate DNA lengthening properties, bind DNA through a two-step mechanism, one being intercalation. (3) Long-chain substituted oxazolopyridocarbazole derivatives, which display the smallest DNA lengthening properties, bind DNA through a single-step mechanism, probably resulting from an outside binding mode. The viscosimetric and kinetic results are compared with the thermodynamic results obtained from the temperature dependence of the binding constants. It appears that drugs binding on the outside of the DNA double helix tend to have large enthalpy and small entropy contributions, whereas pure intercalating drugs have contributions from both enthalpy and entropy, with entropy dominating by about 2:1. Drugs showing two binding modes exhibit a continuum between the aforementioned extremes, with no breaks in behavior. From this comparison, a correlation between thermodynamic data and DNA binding modes is proposed. Possible molecular implications of both enthalpy and entropy to DNA binding free energy are discussed.  相似文献   

11.
Qingting Meng 《Molecular simulation》2017,43(13-16):1338-1347
Abstract

The topotactic transformation mechanism and memory effect of NiAl- and MgFe- layered double hydroxides (LDHs) are investigated by density functional theory (DFT)-based molecular simulation under their two key thermal decomposition temperatures (365, 800 °C for NiAl-LDHs, and 380, 800 °C for MgFe-LDHs). The results show that at the first temperature, the interlayer carbonate in both LDHs decompose to CO2 and H2O via a monodentate intermediate. During the dehydroxylation of the layers, for both LDHs the metal cations maintain their original distribution within the LDH (0?0?1) facet, while migrating substantially along the c-axis direction, and the layered structure of MgFe-LDHs is destroyed earlier than those of NiAl-LDH. Meanwhile, MgFe-LDHs can keep the memory effect longer than NiAl-LDHs, and the memory effect will disappear when the four-coordinated metal cations increased. At 800 °C, the layered structure of NiAl-LDHs is slightly destroyed, while a complete collapse of layered structure occurs in MgFe-LDHs. These results agree well with the experimental findings. This work will be helpful for the design and preparation of nanocatalysts derived from LDHs precursors.  相似文献   

12.
Locatelli GA  Spadari S  Maga G 《Biochemistry》2002,41(32):10332-10342
The protease/helicase NS3 is believed to play a central role in the replication cycle of the hepatitis C virus (HCV), and, therefore, it is an attractive target for antiviral chemotherapy. Several enzymological studies and crystallographic structures are available for the NS3 protease and helicase domains individually, but less is known about the NTPase and helicase activities of the full-length protein. The aim of our study was to characterize from an enzymological point of view the mechanism of interaction of the full-length NS3 protease/helicase with its nucleic acid (NA) and ATP substrates. Our kinetic analysis revealed that both the NA and ATP substrates can interact cooperatively with the enzyme through the coordinated action of two binding sites. Moreover, the observation of a reciprocal influence of both substrates on the kinetics of their interaction with the enzyme suggested that the NS3 helicase works as a dimer which can exist in three functionally different states: (i) an unbound state, with two equivalent low-affinity binding sites for ATP, which shows cooperative high-affinity NA binding; (ii) an ATP-bound state, with two equivalent low-affinity NA binding sites; and (iii) a NA-bound state, with two equivalent high-affinity ATP binding sites. The cycling between these different conformational states is thus regulated by an ATP switch. These results are discussed in light of the current models for NA unwinding by the HCV NS3 helicase.  相似文献   

13.
A highly specific rabbit antiserum against DNA polymerase alpha from regenerating rat liver (antigen AG 1) and an antiserum against the preparation of the enzyme proteolytic fragments possessing catalytic activity (antigen AG 2) were obtained. The enzyme neutralization test revealed that antibodies against AG 2 inhibit the DNA polymerase activity in a much stronger degree, than those against AG 1. Data from a kinetic analysis of the enzyme complexed with the antibodies against AG 1 suggest that the catalytic and binding sites for dNTP and free Mg2+ are altered. The value of apparent Km for activated DNA is unchanged in the DNA polymerase complexes with antibodies both against AG 1 and AG 2.  相似文献   

14.
A novel amperometric glucose sensor based on co-immobilization of ferrocenemethanol (MeOHFc) and glucose oxidase (GOD) in the layered double hydroxides (LDHs) was described. MeOHFc immobilized in LDHs played effectively the role of an electron shuttle and allowed the detection of glucose at 0.25 V (versus SCE), with dramatically reduced interference from easily oxidizable constituents. The sensor (LDHs/MeOHFc/GOD) exhibited a relatively fast response (response time was about 5s), low detection limit (3 microM), and high sensitivity (ca. 60 mA M(-1)cm(-2)) with a linear range of 6.7 x 10(-6) to 3.86 x 10(-4)M of glucose. Apparent Michaelis-Menten constant was calculated to be 2.25 mM.  相似文献   

15.
Nitroakridin 3582 (NA) formed complexes with native deoxyribonucleic acid (DNA) and with transfer ribonucleic acid (tRNA) species from Escherichia coli. Spectrophotometric titrations of NA with these nucleic acids produced numerical results from which nonlinear adsorption isotherms were derived. These curves indicated the existence of more than one class of binding sites on the polymers to which NA was bound by more than one process. The stoichiometry of strong binding of NA to double helical DNA was in agreement with a conventional value (1 ligand molecule per 4.2 component nucleotides) for complete intercalation binding. NA inhibited the DNA-dependent DNA polymerase I and RNA polymerase reactions, the first strongly and the second appreciably. These inhibitions corresponded to the extents to which NA inhibits DNA and RNA biosyntheses in vivo. Evidently, NA interferes with the template function of DNA. The drug also inhibited the polymerization of phenylalanine in a cell-free E. coli ribosome-polyuridylic acid [poly (U)] system. The effect paralleled an inhibition of the poly (U)-directed binding of phenylalanyl tRNA to ribosomes. Ethidium bromide acted similarly. The antimalarial drug, chloroquine, stimulated polyphenylalanine synthesis, apparently as a result of stimulating the poly (U)-directed binding of phenylalanyl tRNA to ribosomes.  相似文献   

16.
The equilibrium binding and association kinetics of the fos-jun dimer (basic and leucine zipper domain) to the AP-1 DNA were studied using a quantitative assay. The basic-region and leucine zipper (bZip) domain of c-fos was expressed as a fusion protein with glutathione S-transferase, and it was bound to glutathione-agarose. The GST-fused fos bZip region was allowed to form a heterodimer with the bZip domain of c-jun, to which radiolabeled AP-1 nucleotides were added. After thorough washing, the gel-bound radioactivity was counted. The binding and dissociation rate constants (k(1) and k-(1)) of the fos-jun dimer and DNA could be obtained from a time-course experiment. The association binding constant (K(1)) was determined using both a thermodynamic equation and kinetic parameters. Nordihydroguaiaretic acid (NDGA), momordin I, natural product inhibitors of the fos-jun/DNA complex formation, was applied to this jun-GST-fused fos system and it was found to decrease the apparent equilibrium binding of dimer and DNA. The thermodynamic constant of dimer and inhibitor binding was also determined.  相似文献   

17.
M. Matsumoto 《Mycoscience》2002,43(2):0185-0189
Specifically primed polymerase chain reaction (PCR) analysis was used for direct detection and identification of Rhizoctonia solani isolates belonging to AG 1 subgroups (IA, IB, and IC) and AG 2 subgroups (2-1 and 2-2). A rapid DNA extraction method with a solution of sodium hydroxide was conducted to extract PCR templates. PCR-specific primer sets for each group were designed from sequences in the regions of the 28S ribosomal DNA of this fungus. The results of specifically primed PCR analysis showed that AG 1-IA, AG 1-IB, AG 1-IC, AG 2-1, and AG 2-2 primers sets contributed detection from the same AG isolates and could escape detection from different AG isolates at a high level of frequency. In this experiment, we suggested that our synthesized primer sets might provide a method for the direct detection and identification of AGs of R. solani. Received: June 28, 2001 / Accepted: November 14, 2001  相似文献   

18.
Layered double hydroxides (LDHs) are a family of high‐profile layer materials with tunable metal species and interlayer spacing, and herein the LDHs are first investigated as bifunctional electrocatalysts. It is found that trinary LDH containing nickel, cobalt, and iron (NiCoFe‐LDH) shows a reasonable bifunctional performance, while exploiting a preoxidation treatment can significantly enhance both oxygen reduction reaction and oxygen evolution reaction activity. This phenomenon is attributed to the partial conversion of Co2+ to Co3+ state in the preoxidation step, which stimulates the charge transfer to the catalyst surface. The practical application of the optimized material is demonstrated with a small potential hysteresis (800 mV for a reversible current density of 20 mA cm?2) as well as a high stability, exceeding the performances of noble metal catalysts (commercial Pt/C and Ir/C). The combination of the electrochemical metrics and the facile and cost‐effective synthesis endows the trinary LDH as a promising bifunctional catalyst for a variety of applications, such as next‐generation regenerative fuel cells or metal–air batteries.  相似文献   

19.
20.
Flow cytometric estimation of nuclear DNA content was performed in six plant species employing three fluorochromes showing different DNA base preferences: propidium iodide (no base preference), 4',6-diamidino-2-phenylindole (DAPI; AT preference), and mithramycin (GC preference). Nuclei isolated from human leukocytes were used as a primary reference standard. While nuclear DNA contents estimated using propidium iodide were in agreement with published data obtained using other techniques, the values obtained using fluorochromes showing base preference were significantly different. It was found that the differences were caused by the differences in overall AT/GC ratios, and by the species-specific differences in binding of these fluorochromes to DNA. It was concluded that nuclear DNA content estimations performed with fluorochromes showing base preference should be interpreted with caution even when AT/GC ratios of the reference and the sample are equal. The use of intercalting dyes (e.g. propidium iodide) is recommended for this purpose. On the other hand, comparison of the staining behaviour of intercalating dyes with that of dyes showing base preference may give additional information on chromatin structural differences and arrangement of molecule pairs in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号