首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于随机森林的胃癌微阵列数据基因通路分析   总被引:1,自引:0,他引:1  
将研究重点从单个基因转移到基因信号通路,结合随机森林与信号通路分析了一组胃癌微阵列数据。通过研究基因在通路中的情况以及通路中的基因对胃癌肠型、弥漫型和正常组织样本的分类能力,扩展了随机森林在生物学中的应用,为胃癌的研究提供了新的思路。  相似文献   

2.
刘万霖  李栋  朱云平  贺福初 《遗传》2007,29(12):1434-1442
随着微阵列数据的快速增长, 微阵列基因表达数据日益成为生物信息学研究的重要数据源。利用微阵列基因表达数据构建基因调控网络也成为一个研究热点。通过构建基因调控网络, 可以解读复杂的调控关系, 发现细胞内的调控模式, 并进而在系统尺度上理解生物学进程。近年来, 人们引入了多种算法来利用基因芯片数据构建基因调控网络。文章回顾了这些算法的发展历史, 尤其是其在理论和方法上的改进, 给出了一些相关的软件平台, 并预测了该领域可能的发展趋势。  相似文献   

3.
DNA微阵列技术可同时定量测定成千上万个基因在生物样本中的表达水平,从这一技术获得的全基因组范围表达数据为揭示基因间复杂调控关系提供了可能。研究人员试图通过数学和计算方法来构建遗传互作的模型,这些基因调控网络模型有聚类法、布尔网络、贝叶斯网络、微分方程等。文章对网络重建计算方法的研究现状进行了较为全面的综述,比较了不同模型的优缺点,并对该领域进一步的研究趋势进行了展望。  相似文献   

4.
基于WGCNA算法的基因共表达网络构建理论及其R软件实现   总被引:2,自引:0,他引:2  
WGCNA(weighted geneco-expression network analysis)算法是一种构建基因共表达网络的典型系统生物学算法,该算法基于高通量的基因信使RNA(mRNA)表达芯片数据,被广泛应用于国际生物医学领域。本文旨在介绍WGCNA的基本数理原理,并依托R软件包WGNCA以实例的方式介绍其应用。WGCNA算法首先假定基因网络服从无尺度分布,并定义基因共表达相关矩阵、基因网络形成的邻接函数,然后计算不同节点的相异系数,并据此构建分层聚类树(hierarchical clusteringtree),该聚类树的不同分支代表不同的基因模块(module),模块内基因共表达程度高,而分数不同模块的基因共表达程度低。最后,探索模块与特定表型或疾病的关联关系,最终达到鉴定疾病治疗的靶点基因、基因网络的目的。  相似文献   

5.
癌的发生与发展过程涉及大量基因的异常表达。在目前基因表达谱分析中采用的标准化方法通常假设在疾病中差异表达的基因的比例很小并且差异上、下调的比例大致相等。这个被研究者所广泛采用的标准化的前提假设尚未被充分地论证过。通过分析胰腺癌的两套表达谱数据,我们发现在胰腺癌样本中基因表达的中值显著高于正常样本,提示传统的标准化假设并不适用于胰腺癌表达谱数据。采用标准化数据会导致错误地判断大量的差异下调的基因并失查许多差异上调的基因。采用原始数据分析发现在胰腺癌中的基因表达有广泛上调的特征,为深入研究胰腺癌的发生和发展机制提供了新线索。  相似文献   

6.
在生命体内,基因以及其它分子间相互作用形成复杂调控网络,生命过程都是以调控网络的形式存在,如从代谢通路网络到转录调控网络,从信号转导网络到蛋白质相互作用网络等等。因此,网络现象是生命现象的复杂本质和主要特征。本文系统地介绍了基于表达谱数据构建基因调控网络的布尔网络模型,线性模型,微分方程模型和贝叶斯网络模型,并对各种网络构建模型进行了深入的分析和总结。同时,文章从基因组序列信息、蛋白质相互作用信息和生物医学文献信息等方面讨论了基因调控网络方面构建的研究,这对从系统生物学水平揭示生命复杂机制具有重要的参考价值。  相似文献   

7.
周小禹 《生物信息学》2016,14(2):123-126
阿尔茨海默病又称老年性痴呆,是一种复杂的中枢神经系统退行性疾病,本文选取一套阿尔茨海默病全基因组关联分析(GWAS)数据,利用Proxy Gene LD软件进行基因水平上的检验,利用Web Gestalt数据库进行遗传通路分析,识别出320个显著(P0.05)的阿尔茨海默病相关基因、8个显著的KEGG通路和41个显著的GO功能类,这些研究结果对进一步揭示阿尔茨海默病潜在的发病机制具有重要意义。  相似文献   

8.
夏遥  孔薇 《生物磁学》2011,(Z1):4742-4747
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法。方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果。结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差。结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法。  相似文献   

9.
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法.方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果.结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差.结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法.  相似文献   

10.
Notch信号通路研究进展   总被引:4,自引:0,他引:4  
Lu ZZ  Wang LS  Wu CT 《生理科学进展》2004,35(2):135-138
在无脊椎动物和脊椎动物发育过程中 ,Notch信号对细胞的命运决定起关键作用。通过Notch受体的信号传递能够扩大并固化相邻细胞之间的分子差异 ,最终决定细胞的命运。本文综述了Notch信号通路的相关细节 ,重点讨论了CSL非依赖的途径  相似文献   

11.
12.
13.
The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups.  相似文献   

14.
微阵列技术是生物技术变革的核心,允许研究者同时监测成千上万个基的表达水平,已广泛应用医学研究.如何挖掘海量基表达信息中的有用信息并进行生物学专业解释,是基表达谱数据分析领所面临的一个重要挑战.生物信号通路研究已成为基芯片中不同表型差异表达研究的主要方法,其是以整个信号通路作为一个整体作为研究对象,此得出的研究结果更加科学和准确.在本文中我们简要描述了近10年来信号通路基集富集分析方法的发展情况,将其分为三个阶段,对每个阶段方法的基础和特点做了一些简单的总结和阐述.  相似文献   

15.
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.  相似文献   

16.
17.
基因芯片技术在病毒性病原体检测中的研究进展   总被引:2,自引:0,他引:2  
基因芯片技术具有高通量、高度平行性、高度自动化的特点。在对传染病病原体的研究中,基因芯片技术已应用于耐药性相关遗传多态性分析、基因分型、生物种系的遗传进化分析、宿主与病原体相互关系分析、病原体检测等。但在病原体检测方面,与检测细菌相比,基因芯片技术对病毒的高通量检测难度较大。简要介绍了目前基因芯片技术在病毒性病原体检测中的研究进展、所采用探针的类型及设计原则、基因芯片杂交结果的影响因素等。  相似文献   

18.
19.
20.
《PloS one》2012,7(12)
Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array.Gene expression signal intensities were similar after applying the log2 or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33–48% of the variance), the RNA amplification batch (12–24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2–3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1–2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency.In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号