首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Mutants of Arabidopsis thaliana deficient in gibberellin synthesis (ga1-3 and ga1-6), and a gibberellin-insensitive mutant (gai) were compared to the wild-type (WT) Landsberg erecta line for flowering time and leaf number when grown in either short days (SD) or continuous light (CL). The ga1-3 mutant, which is severely defective in ent-kaurene synthesis because it lacks most of the GA1 gene, never flowered in SD unless treated with exogenous gibberellin. After a prolonged period of vegetative growth, this mutant eventually underwent senescence without having produced flower buds. The gai mutant and the “leaky” ga1-6 mutant did flower in SD, but took somewhat longer than WT. All the mutants flowered readily in CL, although the ga1-3 mutant showed some delay. Unlike WT and ga1-3, the gai mutant failed to respond to gibberellin treatment by accelerating flowering in SD. A cold treatment promoted flowering in the WT and gai, but failed to induce flowering in ga1-3. From these results, it appears that gibberellin normally plays a role in initiating flowering of Arabidopsis.  相似文献   

3.
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.  相似文献   

4.
5.
Gibberellins (GAs) are a class of important phytohormones regulating a variety of physiological processes during normal plant growth and development. One of the major events during GA-mediated growth is the degradation of DELLA proteins, key negative regulators of GA signaling pathway. The stability of DELLA proteins is thought to be controlled by protein phosphorylation and dephosphorylation. Up to date, no phosphatase involved in this process has been identified. We have identified a dwarfed dominant-negative Arabidopsis mutant, named topp4-1. Reduced expression of TOPP4 using an artificial microRNA strategy also resulted in a dwarfed phenotype. Genetic and biochemical analyses indicated that TOPP4 regulates GA signal transduction mainly via promoting DELLA protein degradation. The severely dwarfed topp4-1 phenotypes were partially rescued by the DELLA deficient mutants rga-t2 and gai-t6, suggesting that the DELLA proteins RGA and GAI are required for the biological function of TOPP4. Both RGA and GAI were greatly accumulated in topp4-1 but significantly decreased in 35S-TOPP4 transgenic plants compared to wild-type plants. Further analyses demonstrated that TOPP4 is able to directly bind and dephosphorylate RGA and GAI, confirming that the TOPP4-controlled phosphorylation status of DELLAs is associated with their stability. These studies provide direct evidence for a crucial role of protein dephosphorylation mediated by TOPP4 in the GA signaling pathway.  相似文献   

6.
7.
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.  相似文献   

8.
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.  相似文献   

9.
Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails.  相似文献   

10.
11.
The fibrillins are a large family of chloroplast proteins that have been linked with stress tolerance and disease resistance. FIBRILLIN4 (FIB4) is found associated with the photosystem II light-harvesting complex, thylakoids, and plastoglobules, which are chloroplast compartments rich in lipophilic antioxidants. For this study, FIB4 expression was knocked down in apple (Malus 3 domestica) using RNA interference. Plastoglobule osmiophilicity was decreased in fib4 knockdown (fib4 KD) tree chloroplasts compared with the wild type, while total plastoglobule number was unchanged. Compared with the wild type, net photosynthetic CO2 fixation in fib4 KD trees was decreased at high light intensity but was increased at low light intensity. Furthermore, fib4 KD trees produced more anthocyanins than the wild type when transferred from low to high light intensity, indicating greater sensitivity to high light stress. Relative to the wild type, fib4 KD apples were more sensitive to methyl viologen and had higher superoxide levels during methyl viologen treatment. Arabidopsis (Arabidopsis thaliana) fib4 mutants and fib4 KD apples were more susceptible than their wild-type counterparts to the bacterial pathogens Pseudomonas syringae pathovar tomato and Erwinia amylovora, respectively, and were more sensitive to ozone-induced tissue damage. Following ozone stress, plastoglobule osmiophilicity decreased in wild-type apple and remained low in fib4 KD trees; total plastoglobule number increased in fib4 KD apples but not in the wild type. These results indicate that FIB4 is required for plastoglobule development and resistance to multiple stresses. This study suggests that FIB4 is involved in regulating plastoglobule content and that defective regulation of plastoglobule content leads to broad stress sensitivity and altered photosynthetic activity.Increased production of reactive oxygen species (ROS) is among the first biochemical responses of plants when challenged by pathogens and harsh environmental conditions (Mehdy, 1994; Lamb and Dixon, 1997; Joo et al., 2005). ROS are implicated in tissue damage during environmental stress and in the promotion of disease development by necrotrophic and hemibiotrophic pathogens (Venisse et al., 2001; Apel and Hirt, 2004; Shetty et al., 2008). For example, ROS production is critical for host colonization and pathogenesis by the bacterium Erwinia amylovora, which causes fire blight disease in rosaceous plants such as apple (Malus 3 domestica) and pear (Pyrus communis; Venisse et al., 2001).The chloroplast is a site of ROS production during biotic and abiotic stress (Joo et al., 2005; Liu et al., 2007). The chloroplast has a battery of enzymes such as superoxide dismutase and ascorbate peroxidase, and antioxidants such as ascorbate, glutathione, and tocopherols, for protection against ROS (Noctor and Foyer, 1998; Asada, 2006). Plastoglobules are lipoprotein bodies attached to the thylakoids (Austin et al., 2006) that store lipids, including antioxidants such as tocopherols, carotenes, and plastoquinones (Steinmüller and Tevini, 1985; Tevini and Steinmüller, 1985). In addition to antioxidants, plastoglobules contain tocopherol cyclase, which is involved in γ-tocopherol synthesis (Austin et al., 2006; Vidi et al., 2006). The antioxidant content of plastoglobules and their apparent involvement in tocopherol biosynthesis imply that they could play a role in plant responses to oxidative stress.Plastoglobules contain fibrillins, which were initially described as protein components of chromoplast fibrils with a molecular mass of approximately 30 kD (Winkenbach et al., 1976; Knoth et al., 1986; Emter et al., 1990; Deruère et al., 1994). Fibrillins are ubiquitous proteins present from cyanobacteria to plants (Laizet et al., 2004). Fibrillins maintain plastoglobule structural integrity (Deruère et al., 1994; Pozueta-Romero et al., 1997; Langenkämper et al., 2001; Vidi et al., 2006; Bréhélin et al., 2007) and stabilize the photosynthetic apparatus during photooxidative stress (Gillet et al., 1998; Yang et al., 2006; Youssef et al., 2010), osmotic stress (Gillet et al., 1998), drought (Pruvot et al., 1996; Rey et al., 2000), and low temperature (Rorat et al., 2001). Fibrillins are involved in abscisic acid-mediated protection from photoinhibition (Yang et al., 2006), and a subfamily of Arabidopsis (Arabidopsis thaliana) fibrillins (FIB1a, -1b, and -2) conditions jasmonate production during low-temperature, photooxidative stress (Youssef et al., 2010). Arabidopsis plants lacking one fibrillin (At4g22240) and tomato (Solanum lycopersicum) plants with suppressed expression of a fibrillin (LeCHRC) are susceptible to Pseudomonas syringae and Botrytis cinerea, respectively (Cooper et al., 2003; Leitner-Dagan et al., 2006), indicating that fibrillins play a role in disease resistance.The Arabidopsis fibrillin encoded by At3g23400 has received various appellations, including FIBRILLIN4 (FIB4; Laizet et al., 2004), Harpin-Binding Protein1 (Song et al., 2002), AtPGL 30.4 (Vidi et al., 2006), and Fibrillin6 (Galetskiy et al., 2008); here, it will be referred to by its earliest published name, FIB4. FIB4 is found associated with the PSII light-harvesting complex (Galetskiy et al., 2008). FIB4 has also been detected in plastoglobules (Vidi et al., 2006; Ytterberg et al., 2006) and thylakoids (Friso et al., 2004; Peltier et al., 2004). However, the specific function of FIB4 is unknown. Several lines of evidence suggest that FIB4 may be involved in plant disease resistance responses: pathogen-associated molecular patterns trigger its phosphorylation (Jones et al., 2006); pathogen-associated molecular patterns stimulate the expression of its ortholog in tobacco (Nicotiana tabacum; Jones et al., 2006; Sanabria and Dubery, 2006); and it can physically interact with the HrpN (harpin) virulence protein of the fire blight pathogen E. amylovora in a yeast two-hybrid assay, suggesting that it could be a receptor or target of HrpN (Song et al., 2002). In addition, it is thought that FIB4 may be involved in the transport of small, hydrophobic molecules because it contains a conserved lipocalin signature (Jones et al., 2006). Here, we report a genetic analysis of FIB4 function in apple and Arabidopsis in terms of its role in plastoglobule development and plant resistance to biotic and abiotic stresses.  相似文献   

12.
13.
通过对3个拟南芥(Arabidopsis thaliana)雄性不育突变体(ms1521,st350,st454)的分析,研究了MS1521基因在花药发育过程中的功能。ms1521是通过EMS诱变野生型拟南芥得到的一株突变体,遗传分析表明ms1521是隐性单核基因控制的。利用图位克隆的方法对不育基因MS1521进行了定位,结果将MS1521定位于拟南芥第一条染色体上26kb的区间内,该定位区间内有一个影响花器官形态建成的基因UFO。测序结果表明在ms1521突变体中UFO基因编码区的958bp处发生了单碱基突变,导致MS1521该位点的氨基酸由天冬酰胺变成了天冬氨酸。另外两个表型与ms1521相似的突变体st350和st454来自T-DNA插入突变体群体。测序结果表明突变体st350和st454分别在UFO基因编码区发生了提前终止突变。等位分析表明它们与MS1521基因是等位的。3个突变体营养生长期发育正常,但生殖生长发育出现异常:有的雄蕊只有花丝没有花药;或者有花药但花丝变短;或者雄蕊有正常的花丝和花药,花药中有可育的花粉,但药室不能开裂;最终导致突变体不育的表型。进一步细胞学观察发现药室不能开裂是由于药室内壁细胞纤维化和木质化增厚不明显造成的。以上这些结果表明MS1521基因在花药发育过程中起重要作用。  相似文献   

14.
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.  相似文献   

15.
Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3.  相似文献   

16.
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.  相似文献   

17.
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号