首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geobacter sulfurreducens is a delta-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

2.
Geobacter sulfurreducens is a δ-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

3.
人参皂苷降脂作用的研究   总被引:11,自引:2,他引:9  
为了测定西洋参总皂苷及单体皂苷是否有降脂活性,通过体外实验分别测定脂肪分解活性、小肠刷状缘膜小囊吸收脂肪酸、三油酸甘油酯油酸的释放率。结果表明,西洋参茎叶总皂苷在0.5g/L浓度时,对胰脂肪酶活性的抑制率为90%;人参皂苷Rc,Rb1,Rb2对胰脂肪酶活性均显示很强的抑制作用,在0.5g/L浓度时抑制率分别为100%,96%,97%。西洋参总皂苷和人参皂苷Rc,Rh,Rb2可以通过抑制胰脂肪酶活性起到降脂作用。  相似文献   

4.
The generalized structural transitions of erythrocyte membranes induced by cyclic AMP were registered by ESR, fluorescence, freeze-fracture and circular dichroism methods. Two transitions different in nature were revealed. One, which arises at 10-(11)--10-(10) M cyclic AMP, is cooperative and may be considered as a consequence of interaction of cyclic AMP with a receptor. It was calculated that a structural rearrangement in one erythrocyte ghost is induced by three cyclic AMP molecules. As a result of it the membranes are "loosened". The other transition arises at 10-(10)--10-(8) M cyclic AMP and depends on the activity of the protein kinase system. This transition was shown to be non-cooperative and due to phosphorylation of membranous proteins. During this rearrangement the membranes are "stiffened". Both transitions were demonstrated to relate to the membrane integrity.  相似文献   

5.
Several transport systems mediating the placental transport of Na, K and Cl have been described, but whether the trophoblast membrane also expresses a Na-K-Cl cotransporter that mediates the coupled movement of all three ions remains unclear. Here we show that BeWo cells, a human trophoblastic cell line, exhibit bumetanide-sensitive (86)Rb (a K surrogate) uptake. Entry via this route accounts for approximately 17% of the (86)Rb influx with the remainder being mediated largely via the Na,K-ATPase. The activity of the bumetanide-sensitive transporter was rapidly elevated (>40%) upon subjecting cells to an acute hyperosmotic challenge signifying a potential role in cell volume regulation. Antibodies to the Na-K-Cl cotransporter identified a single band of approximately 200 kDa on Western blots of fractionated BeWo membranes. This immunoreactivity colocalized with that of the Na,K-ATPase (a basal membrane marker), but was absent from membranes enriched with placental alkaline phosphatase (an apical membrane marker). These findings show for the first time, that a Na-K-Cl cotransporter is expressed in a human placental cell line which may be involved in regulating trophoblast cell volume.  相似文献   

6.
The peculiarities of the interaction between cell membrane lipids and triterpene glycosides from holothurians Apostichopus japonicus S. and Cucumaria japonica (holotoxin A1 and cucumarioside A2-2, respectively) were studied in comparison with plant saponins from Quillaja saponaria, known as hemolytic, adjuvant, and structure-forming components of immunostimulating complexes. Similar to Quillaja saponins, the sea glycosides, holotoxin A1 and cucumarioside A2-2 were shown to possess a high hemolytic activity (2.6 and 3 microg/ml, respectively) and sterol-depending membranotropic effect mediated by the formation of nonbilayer sterol-lipid-glycoside complexes. At the same time, cucumarioside A2-2 bound exogenic cholesterol only in the presence of membrane lipids, such as phosphatidylcholine or monogalactosyldiacylglycerol, in contrast to Quillaja saponins and holotoxin A1, which bound cholesterol in the molar ratios 1:2 and 1:8, respectively. Moreover, in all cases, tree-component complexes containing cholesterol, lipid, and glycoside exhibited a lower hemolytic activity compared with two-component sterol-glycoside complexes. It was concluded that the hydrophobic medium of cell membranes performs a potentiative role in the effective interaction between triterpene glycosides and "sterol receptors". A method for decreasing the toxicity of membranotropic holothurian glycosides possessing the immunomodulating properties was suggested.  相似文献   

7.
Quick-freeze differential scanning calorimetry (QF-DSC) and saturation transfer-electron spin resonance (ST-ESR) spectroscopy were used to study lipid gel-phase transitions in mature green tomato fruit microsomal membranes. ST-ESR of 12-doxyl methyl stearate labelled membranes proved to be reproducible and provided increased sensitivity to temperature-induced structural changes, allowing the detection of several transitions in isolated membranes (6 degrees C, 21 degrees C, 28 degrees C). QF-DSC led to the assessment of lipid gel phase transitions in isolated microsomal membranes and microsomal membrane lipids by enhancing the transition. A phase transition enthalpy of 114 J/g and an onset temperature of 29.8 degrees C were obtained for whole membranes while with isolated lipids values of 370 J/g and 19.9 degrees C were found.  相似文献   

8.
This paper deals with microviscosity parameters and thermoinduced structural transitions in the lipids of smooth and heavy rough endoplasmic reticulum membranes isolated from Krebs II ascites cells incubated with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate. The phorbol ester was found to bring about a threefold increase in the microviscosity of the lipids in heavy rough membranes. Spin probe I (2,2,6,6-tetrahydro-4-capryloyl-oxypiperidine-1-oxyl), localized in the surface layer of the membrane lipids, gave results which indicate an increased number of thermoinduced structural transitions in the smooth membranes in the treated cells due to the transitions occurring at relatively low temperature and a decreased number of such transitions in the heavy rough fraction especially at high temperature. For 5,6-benzo-2,2,4,4-tetramethyl-1,2,3,4-tetrahydro-gamma-carboline-oxyl, probe II, mainly distributed in the annular lipids, a decrease in the number of low temperature transitions in the smooth fraction was observed, while an increase occurred in the heavy rough one. The results obtained are discussed in terms of the effect of phorbol esters as promoters of tumor progression.  相似文献   

9.
In studies on the membranlytic action of various saponins on mycelium of Botrytis cinerea and Rhizoctonia solani digitonin, alpha-hederin and tomatin caused considerable leakage of free amino acids, while aescin and theasaponin were less effective. Cyclamin significantly damaged cell membranes of R. solani, but did not change the selective permeability of B. cinerea. Cell membrane disruption was accompanied by an enzymatic conversion of saponins into their corresponding aglycones in cell membrane vicinity, an effect which was significantly inhibited by aldonolactones, known inhibitors of beta-glycosidases. These results lead to the conclusion that the hardly water soluble aglycones are the active part of the saponin molecules, the saponins themselves being only water soluble transport forms. It follows, that the presence of appropriate glycosidases in cell membranes, capable of converting saponins into their aglycones, is a prerequisite for the membranlytic action of saponins. The similarity of the membranlytic effects of saponins towards fungi and erythrocytes is descussed.  相似文献   

10.
Lysine-valinomycine and two N epsilon-acyl derivatives are compared with respect to their potency to transport Rb+ ions across thin lipid membranes. Lysine-valinomycin acts as a neutral ion carrier only above a pH of about 7 of the aqueous solutions, while at lower pH the molecules seem to be positively charged due to a protonation of the epsilon-NH2 group of the lysine residue. A kinetic analysis based on voltage jump relaxation experiments and on the nonlinearity of the current-voltage characteristics showed that the conductance increment delta per carrier molecule for uncharged lysine-valinomycin is similar to that of natural valinomycin. The attachment of a rather bulky side group such as the dansyl or para-nitrobenzyloxycarbonyl group reduced delta by approximately one order of magnitude. Some of the relaxation data of the valinomycin analogues were influenced by an unspecific relaxation of the pure lipid membrane. This structural relaxation represents a limitation to the possibility of analyzing specific transport systems in thin lipid membranes by the voltage jump or charge pulse techniques. It is shown that the time dependence of this structural relaxation--which was first published by Sargent (1975)--is at variance with a three capacitor equivalent circuit of the membrane, which was suggested by Coster and Smith (1974) on the basis of a.c. measurements. A modified equivalent circuit has been found to represent a satisfactory analogue for the current relaxation in the presence of valinomycin. It turned out, however, that such an equivalent circuit provides little insight into the molecular mechanism of transport.  相似文献   

11.
The composition of vacuolar membrane phospholipids in the taproot of red beet (Beta vulgaris L.), cv. Modana, was determined at normal conditions and under different types of stress (hypo- and hyperosmotic and oxidative stress). The experiments have shown that, among vacuolar membrane phospholipids in red beet taproot, phosphatidylcholines and phosphatidylethanolamines dominated and accounted for 70% of total phospholipids. It is interesting that the content of phosphatidic acid was high (20% of total phospholipids of the vacuolar membrane). Stress effects brought about changes in the composition of membrane phospholipids, which may be an element of phenotypic adaptation. Under hypoosmotic stress, reliable changes in the content of phosphatidic acid were observed, hyperosmotic stress was associated with changes in the level of phosphatidylcholines and phosphatidylinositols, and oxidative stress was notable for changes in the content of phosphatidylethanolamines and phosphatidylserines. The most significant changes were observed in the classes of phospholipids that may be involved in structural modification of membranes associated with transformation of their bilayer lamellar structure into hexagonal. These phospholipids comprise phosphatidic acid, phosphatidylcholines, and phosphatidylethanolamines. Revealed changes in the content of these phospholipids may alter the ratio between lamellar bilayer and nonbilayer hexagonal lipid structures in the vacuolar membrane and act as an important adaptation mechanism ensuring protection against stress.  相似文献   

12.
The generalized structural transitions of erythrocyte membranes induced by cyclic AMP were registered by ESR, fluorescence, freeze-fracture and circular dichroism methods. Two transitions different in nature wre revealed. One, which arises at10?11-10?10 M cyclic AMP, is cooperative and may be considered as a consequence of interaciton of cyclic AMP with a receptor. It was calculated that a structural rearrangement in one erythrocyte ghost is induced by three cyclic AMP molecules. As a result of it the membranes are “loosened”.The other transition arises at 10?10-10?8 M cyclic AMP and depends on the activity of the protein kinase system. This transition was shown to be non-cooperative and due to phosphorylation of membranous proteins. During this rearrangement the membranes are “stiffened”.Both transitions were demonstrated to related to the membrane integrity.  相似文献   

13.
Seasonal alterations in the ultrastructure of the plasma membrane produced by slow freezing were examined in cortical parenchyma cells of mulberry twigs (Morus bombyciz Koidz. cv. Goroji) grown in northern Japan. In freezing-sensitive summer, freezing produced distinct aparticulate domains with accompanying inverted hexagonalII (HII) phase transitions in the plasma membrane. In autumn and spring, during cold acclimation and deacclimation, freezing produced aparticulate domains in the plasma membrane without accompanying Hii phase transitions. In winter, when the twigs were freezing-tolerant, freezing did not produce ultrastructural alterations in the plasma membrane. A significant relationship was recognized between the percentages of cells with aparticulate domains in the plasma membrane, regardless of the presence or absence of HII phase transitions, and the occurrence of freezing injury throughout all seasons and at all freezing temperatures tested in each season. The aparticulate domains in the plasma membranes were shown to be produced by the close apposition of membranes due to freezing-induced dehydration and deformation of cells. Although the precise mechanisms that cause injury as a result of the formation of aparticulate domains in the plasma membrane remain unclear, our results indicate that the development of cold acclimation paralleled the process whereby cells developed the ability to reduce and finally to prevent the formation of aparticulate domains in the plasma membrane that would otherwise result from freezing-induced cellular dehydration and deformation that brings membranes into close proximity with one another.  相似文献   

14.
Various acetylcholine receptor-rich membrane preparations from Torpedo californica electroplax tissue were examined using the techniques of differential scanning calorimetry coupled with gel electrophoretic analysis of heat-denaturing material and functional assays following passage through discrete transitions. In unfractionated membranes, four irreversible calorimetric transitions were observed, one of which (Td = 59 degrees C) could be assigned to a complete loss of acetylcholine receptor function. A second lower temperature transition apparently corresponds to loss of certain peripheral membrane proteins including the Mr = 43,000 polypeptide and the acetylcholinesterase activity. Membrane preparations highly enriched in acetylcholine receptor polypeptides contained a major transition at 59 degrees C which could be shown to be sensitive to the presence of added ligands of the acetylcholine receptor, supporting its assignment to structural alterations of the receptor protein or its arrangement in the membrane.  相似文献   

15.
We studied the influence of structurally different saponins on the cholesterol content of cellular membranes. Therefore a cell culture model using ECV-304 urinary bladder carcinoma cells was developed. To measure the cholesterol content we used radiolabeled 3H-cholesterol which is chemically and physiologically identical to natural cholesterol. The cells were pre-incubated with 3H-cholesterol and after a medium change, they were treated with saponins to assess a saponin-induced cholesterol liberation from the cell membrane. In another experiment the cells were pre-incubated with saponins and after a medium change, they were treated with 3H-cholesterol to assess a saponin-induced inhibition of cholesterol uptake into the cell membrane. Furthermore, the membrane toxicity of all applied saponins was analyzed using extracellular LDH quantification and the general cytotoxicity was analyzed using a colorimetric MTT-assay and DNA quantification. Our results revealed a correlation between membrane toxicity and general cytotoxicity. We also compared the results from the experiments on the saponin-induced cholesterol liberation as well as the saponin-induced inhibition of cholesterol uptake with the membrane toxicity. A significant reduction in the cell membrane cholesterol content was noted for those saponins who showed membrane toxicity (IC50 <60 μM). These potent membrane toxic saponins either liberated 3H-cholesterol from intact cell membranes or blocked the integration of supplemented 3H-cholesterol into the cell membrane. Saponins with little influence on the cell membrane (IC50 >100 μM) insignificantly altered the cell membrane cholesterol content. The results suggested that the general cytotoxicity of saponins is mainly dependent on their membrane toxicity and that the membrane toxicity might be caused by the loss of cholesterol from the cell membrane.We also analyzed the influence of a significantly membrane toxic saponin on the cholesterol content of intracellular membranes such as those of endosomes and lysosomes. In these experiments ECV-304 cells were either incubated with 3H-cholesterol or with 3H-cholesterol and 5 μM saponin. After isolation of the endosomes/lysosomes their 3H-cholesterol content was measured. A significant influence of the saponins on the cholesterol content of endosomal/lysosomal membranes was not detected.  相似文献   

16.
Summary This paper concerns the estimation of microviscosity parameters in smooth, light rough and heavy rough endoplasmic reticulum subfractions isolated from L-929 cells. Electron spin resonance using three probes was utilized in order to make estimations of rotational correlation times. The highest microviscosity was found in the smooth fraction. The lipid bilayer is less viscous and the annular one more rigid in heavy rough compared to light rough membranes. The individual membrane subfractions differ with regard to their portrait of thermoinduced structural transitions. The highest number of such transitions was detected in smooth membranes. There were no low-temperature transitions (relative to physiological temperature) or common thermoinduced structural rearrangements of the lipids in the heavy rough subfraction, a membrane fraction characteristic of transformed cells. The results show that each membrane subfraction is characterized by an intrinsic series of thermoinduced structural transitions, which, in combination with an estimation of microviscosity, yields a portrait of the structural state of the membrane lipids.  相似文献   

17.
The haemolysis of red blood cells inducing toxicity in most animals including humans is a major drawback for the clinical development of saponins as antitumour agents. In this study, the haemolytic and cytotoxic activities as well as the membrane cell permeabilization property of a library of 31 semi-synthetic and natural lupane- and oleanane-type saponins were evaluated and the structure–activity relationships were established. It was shown that lupane-type saponins do not exhibit any haemolytic activity and membrane cell permeabilization property at the maximum concentration tested (100 μM) independently of the nature of the sugar moieties. While oleanane-type saponins such as β-hederin (25) and hederacolchiside A1 (27) cause the death of cancer cell lines by permeabilizing the cellular membranes, lupane-type saponins seem to proceed via another mechanism, which could be related to the induction of apoptosis. Altogether, the results indicate that the cytotoxic lupane-type glycosides 10 and 22 bearing an α-l-rhamnopyranose moiety at the C-3 position represent promising antitumour agents for further studies on tumour-bearing mice since they are devoid of toxicity associated with the haemolysis of red blood cells.  相似文献   

18.
Saponins are a group of plant and marine derived glycosides with numerous biological functions. Two important characteristics of certain plant saponins are their ability to enhance cytotoxicity of type I ribosome inactivating proteins and stimulation of the immune system. The main objective of the present study was to investigate in real-time the permeabilizing effects of saponins on cell membrane. A set of oleanane saponins (glycyrrhizinic acid, Gypsophila, Saponaria and Quillaja saponins) and a steroid saponin (digitonin) were tested. The effects of these saponins on lysosomal membranes and hemolysis, along with their charge were also studied. Real-time monitoring of cell membrane permeabilization facilitated a highly sensitive analysis of the cellular kinetics. Saponins showed variable permeabilizing effects on cellular and lysosomal membranes at concentrations from 6 μM and hemolysis from 3 μM. Further, the results suggest that charge of the saponin may be relevant for permeabilizing effects of oleanane saponins.  相似文献   

19.
Morinaga O  Fukuda N  Tanaka H  Shoyama Y 《Glycobiology》2005,15(10):1061-1066
A method has been devised for the chromatographic resolution of glucosidic compounds, ginseng saponins, on polyethersulphone (PES) membrane. The method results in good resolution and quantitative immunoassay for ginsenoside Rb1 (G-Rb1), G-Rc, and G-Rd in crude extracts of various ginsengs. The newly established method is simpler and applies for quantitative analysis. Ginsenosides developed by acetonitrile-water-acetic acid solvent system on a PES membrane were directly treated with a NaIO4 solution followed by bovine serum albumin (BSA), resulting in a ginsenoside-BSA conjugate on a PES membrane. Anti-G-Rb1 monoclonal antibody (MAb) was bound, and then a second antibody labeled with peroxidase directed against the first antibody. Finally a substrate reacted to the enzyme and gave staining. The stained membrane was scanned, and spots were analyzed quantitatively using NIH Image software. At least 62.5 ng of G-Rb1, G-Rc, and G-Rd were clearly detectable individually. Three ginsenosides can be analyzed quantitatively between 0.125 and 2.0 microg.  相似文献   

20.
The interactions of chromium(VI) with the plasma membranes of chromium-sensitive (chr-51S) and chromium-tolerant (chr1-66T) mutants and their parental strain (6chr(+)) of a Schizosaccharomyces pombe strain were studied by electron paramagnetic resonance (EPR) spectroscopy. 5-doxylstearic acid (5-SASL) and 3-doxylbutyric acid (HO-185) spin probes were used to label the membranes. The order parameter S from the EPR spectra was calculated at different temperatures (0-25 degrees C) in order to characterize the internal dynamics of the membranes. In control experiments, both mutants exhibited differences in structural transitions in the both 5-SASL- and the HO-185-labeled membranes in comparison with their parental strain, suggesting differences in the membrane composition and/or rotational dynamics of these mutants. Addition of K(2)Cr(2)O(7) (225 microM) induced small decreases in the phase transition temperatures of the 5-SASL-labeled membranes of the parental and chromium-sensitive strains. More pronounced effects of the chromium compound on the HO-185-labeled membranes were detected as evidence that the membrane perturbations are mostly localized in the environment of the lipid-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号