首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. Phosphoenolpyruvate carboxykinase (GTP) in the cytosol fraction of liver was labelled in young rats by the injection of [(3)H]leucine and then isolated with specific antibody. Antibody-antigen precipitates from ;pulse'-labelled animals and from animals in which the content of radioactive enzyme had been decreased by a period of degradation were separated by electrophoresis on sodium dodecyl sulphate-polyacrylamide gels. No radioactive breakdown products were found. 2. (3)H-labelled phosphoenolpyruvate carboxykinase (GTP) was purified from rat liver and used to measure degradation in vitro. There was first a loss of catalytic activity, then a disappearance of immunological activity and finally a loss of solubility before any evidence of proteolytic cleavage. Proteolytic-cleavage fragments, when found, were also insoluble. 3. An analysis of the subcellular location of enzyme inactivation showed that phosphoenolpyruvate carboxykinase (GTP) was stable when incubated with liver cytosol fraction and was inactivated most rapidly by the microsomal fraction. 4. We propose that denaturation of the enzyme is the rate-limiting step in degradation in vivo, and precedes proteolytic cleavage when the enzyme is incubated with liver preparations in vitro.  相似文献   

4.
The effect glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP)(EC4.1.1.32) in rat liver and kidney in vivo was studied immunochemically. The glucocorticoid analogue triamcinolone (9alpha-fluoro-11beta, 21-dihydroxy-16alpha,17alpha-isopropylidenedioxypregna-1,4-diene-3,20-dione) increased the synthesis rate of the kidney enzyme in starved animals. Both triamcinolone and cortisol decreased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP) in fed and starved rats, but were without effect on the degradation rate of the enzyme. This effect of triamcinolone in liver was reversed by injection of dibutyryl cyclic AMP. However, in diabetic animals glucocorticoids increased the synthesis rate of hepatic phosphoenolpyruvate carboxykinase (GTP). Triamcinolone administration to starved rats in vivo is shown to cause an increase in the portal blood concentrations of insulin and glucose. Since the physiological de-inducer of liver phosphoenolpyruvate carboxykinase (GTP) is insulin, this is the probable cause of the decrease in the synthesis rate of the hepatic enzyme noted when glucocorticoids are administered to non-diabetic animals.  相似文献   

5.
Phosphoenolpyruvate carboxykinase (GTP) was induced by a combination of dibutyryl cyclic AMP, theophyline and dexamethasone in Reuber H35 hepatoma cells under conditions where an amino acid in the medium was replaced by an appropriate analogue. 2. With canavanine replacing arginine or with 5-fluorotryptophan or 6-fluorotryptophan replacing tryptophan the induced enzyme had a lower catalytic activity-relative to antibody reactivity. 3. These aberrant enzyme molecules were heat-labile in vitro. 4. Measurements of enzyme degradation in vivo indicated that the canavanine-containing enzyme and the 6-fluorotryptophan-containing enzyme were degraded more rapidly than the enzyme containing all natural amino acids.  相似文献   

6.
Reuber H35 cells were pulse-labeled with radioactive leucine and the influence of hormones, serum, and amino acids on protein degradation was investigated during a subsequent chase period. Radioactive, immunoprecipitable phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) had a half-life of 5 to 6 hours which was not influenced by either N6, O2-dibutyryl adenosine 3':5'-monophosphate, dexamethasone, or insulin. The rate of phosphoenolpyruvate carboxykinase degradation was the same under steady state conditions as during the approach to a new steady state following hormonal induction or deinduction of the enzyme. Therefore, hormonal regulation of enzyme activity in vivo is the result of changes in the rate of enzyme synthesis. The rate of proteolysis for total cell proteins was increased under nutritional step-down conditions produced by the removal of serum or amino acids, or both, from the medium. This effect was completely prevented by insulin. Cycloheximide and puromycin, but not actinomycin D or cordycepin, inhibited protein degradation under step-down conditions but did not further decrease the basal rate of proteolysis measured in the presence of either insulin or serum plus amino acids. There was a good correlation between changes in proteolysis produced by serum and amino acids and changes in the degradation rate of phosphoenolpyruvate carboxykinase. Also, inhibition of proteolysis with cycloheximide and puromycin was accompanied by a decrease in the degradation rate for enzyme antigen. It is suggested that nutritional step-down leads either to the synthesis or activation of a proteolytic system.  相似文献   

7.
1. After nicotinic acid treatment, rat liver glycogen is depleted and phosphoenolpyruvate carboxykinase activity increased, to about twice the initial value. 2. The increase in phosphoenolpyruvate carboxykinase activity promoted by nicotinic acid is prevented by cycloheximide or actinomycin D, suggesting that this effect is produced by synthesis of the enzyme de novo. 3. Despite the enhancement of phosphoenolpyruvate carboxykinase activity and glycogen depletion, which occurs 5h after the injection of nicotinic acid, the gluconeogenic capacity of liver is low and considerably less than the values found in rats starved for 48h. 4. When the livers of well-fed rats are perfused in the presence of low concentrations of glucose, the activity of phosphoenolpyruvate carboxykinase significantly increases compared with the control. 5. This increase is not related to the glycogen content, but seems to be also the result of synthesis of the enzyme de novo, since this effect is counteracted by previous treatment with cycloheximide or actinomycin D. 6. Phosphoenolpyruvate carboxykinase activity is not increased in the presence of low concentrations of circulating glucose when 40 mM-imidazole (an activator of phosphodiesterase) is added to the perfusion medium. 7. Addition of dibutyryl cyclic AMP to the perfusion medium results in an increase in phosphoenolpyruvate carboxykinase activity, in spite of the presence of normal concentrations of circulating glucose. On the other hand, the concentration of cyclic AMP in the liver increases when that of glucose in the medium is low. 8. These results suggest that, in the absence of hormonal factors, the regulation of phosphoenolpyruvate carboxykinase can be accomplished by glucose itself, inadequate concentrations of it resulting in the induction of the enzyme. The mediator in this regulation, as in hormonal regulation, seems to be cyclic AMP.  相似文献   

8.
The role protein kinase C plays in the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin and phorbol esters was studied in H4IIE hepatoma cells (ATCC CRL 1548). The combined effects of phorbol 12-myristate 13-acetate (PMA) and insulin on the suppression of mRNA coding for PEPCK (mRNAPEPCK) synthesis were additive. A potent inhibitor of both cyclic nucleotide-dependent protein kinases and protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, inhibited the cAMP and PMA-mediated regulation of mRNAPEPCK synthesis, but did not affect the action of insulin. Desensitization of the protein kinase C pathway by exposure to PMA for 16 h abolished the subsequent action of the phorbol ester, but did not affect insulin- or cAMP-mediated regulation of PEPCK gene expression. We conclude that insulin suppresses PEPCK gene expression independently from the protein kinase C-mediated pathway used by phorbol esters.  相似文献   

9.
Mammalian phosphoenolpyruvate carboxykinase (PEPCK) specifically requires a guanosine or inosine nucleotide as a substrate; however, the structural basis for this nucleotide specificity is not yet known. Because affinity labels derived from guanosine have not yielded a stable, modified peptide in quantities sufficient for sequence analysis, we have investigated the utility of direct photochemical cross-linking of GTP to PEPCK in order to identify the nucleotide binding site. UV irradiation at a distance of 2 cm by a Mineralight lamp (330 microW/cm2) results in the attachment of [alpha-32P]GTP to PEPCK via a stable, covalent linkage in a reaction that is dependent upon GTP concentration and duration of irradiation. After 10 min of irradiation, more than 0.2 mol of [alpha-32P] GTP is incorporated per mole of PEPCK; under these conditions the GTP concentration required for half-maximal labeling is 69 microM. The substrates phosphoenolpyruvate, ITP, and GDP provide protection against photolabeling, as do Mn2+ and Mg2+. One major and one minor radioactive peptide derived from proteolytic digests of photolabeled PEPCK have been isolated and identified. The major modified peptide has been provisionally assigned to an acidic region near the C-terminus, and the minor peptide has been identified as Ser462-Lys471.  相似文献   

10.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

11.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

12.
Regulation of carbamoyl-phosphate synthetase I (CPS) synthesis by various hormones was compared in primary cultured hepatocytes from adult rat and in Reuber hepatoma H-35 by pulse labeling of the cells with [35S]methionine. CPS synthesis in hepatocytes was stimulated 8-fold and 5-fold by dexamethasone and glucagon respectively. CPS synthesis in hepatocytes was synergically (about 50-fold) stimulated by a combination of dexamethasone and glucagon. Less synergic stimulation was observed by combining dexamethasone with N6, O2'-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) or with isoproterenol. The basal level of CPS synthesis in hepatoma cells was higher than that in hepatocytes. CPS synthesis in hepatoma cells was stimulated by dexamethasone and dibutyryl-cAMP but the extent was only 3-fold and 1.8-fold respectively. The synergic effect of combination of dexamethasone and dibutyryl-cAMP was not observed in hepatoma cells. Neither glucagon nor isoproterenol exhibited an appreciable effect on CPS synthesis in hepatoma cells. Insulin and epinephrine suppressed CPS synthesis both in hepatocytes and hepatoma cells. The effect of epinephrine was indicated to be through alpha-adrenergic receptors. The effects of insulin and epinephrine were additive on CPS synthesis both in hepatocytes and hepatoma cells.  相似文献   

13.
14.
A mutation has been characterized in Escherichia coli which results in temperature-sensitive expression of phosphoenolpyruvate carboxykinase activity and antigen. The enzyme produced by the mutant strain at a permissive temperature or by cells treated with chloramphenicol at nonpermissive temperatures had normal activity and stability in extracts. Since phosphoenolpyruvate carboxykinase had a monomeric structure, the mutation probably affects the synthesis, rather than the structure or assembly, of the enzyme.  相似文献   

15.
Reuber hepatoma H-35 cells actively synthesize the urea cycle enzyme, carbamoyl-phosphate synthetase I. Treatment of H-35 cells with dexamethasone (0.14 microM), however, enhanced synthesis of the enzyme (as measured by incorporation of [35S]methionine) by 4-5-fold. Insulin (0.18 microM) completely inhibited dexamethasone-dependent stimulation of enzyme synthesis. In vitro translation and cDNA hybridization assays were employed to measure effects of dexamethasone plus or minus insulin on levels of mRNA encoding the biosynthetic precursor of carbamoyl-phosphate synthetase I (pCPS) in Reuber H-35 cells. Both measurements yielded similar results: dexamethasone increased pCPS mRNA levels by 4-5-fold and insulin suppressed this response, but only by 50%. Specific cDNA hybridization assays also demonstrated that Reuber H-35 cells, even after hormone treatments, contain only very low levels of albumin mRNA, and no detectable ornithine carbamoyl-transferase mRNA.  相似文献   

16.
17.
18.
19.
Summary Insulin is able to stimulate a growth response in a variety of different cell types. However, the role of the insulin receptor in mediating this response is not clear. Indeed, it has been reported that the ability of insulin to stimulate a growth response is a result of its interaction with other growth factor receptors rather than the insulin receptor.We have previously reported that the H-35 hepatoma cell line responded to physiological concentrations of insulin as a growth factor and that the relative potency of proinsulin suggested that this response was mediated by the insulin receptor. In this report, two experimental approaches are used to demonstrate the involvement of the insulin receptor in mediating the growth response. Two different preparations of antibody to the insulin receptor are found to be capable of stimulating this response. In addition, the human insulin-like growth factors (IGF-I and II) show very low cross-reactivity with the insulin receptor and are significantly less potent than insulin in stimulating the growth response.Abbrevations IGF insulin-like growth factor - MSA multiplication stimulating activity - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

20.
The effects of an extract from adult liver on hepatoma cells cultivated in vitro (line H-35) are studied with cytological and quantitative cytochemical methods. This extract inhibits cell multiplication and premitotic DNA synthesis. The treated cells form "trabeculae" looking like those observed when normal adult hepatocytes are cultivated in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号