首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Immunohistochemical procedures revealed the occurrence of histamine-like immunoreactivity in specific neurones in the gastropod nervous system. Positive staining was also associated with a characterised neurone known from previous biochemical studies to contain histamine. The proof of the restriction of histamine to specific neurones and the availability of a suitable antiserum to localise the amine makes it possible to examine the role of the compound in different nervous systems.  相似文献   

2.
Summary Immunohistochemical procedures revealed the occurrence of histamine-like immunoreactivity in specific neurones in the gastropod nervous system. Positive staining was also associated with a characterised neurone known from previous biochemical studies to contain histamine. The proof of the restriction of histamine to specific neurones and the availability of a suitable antiserum to localise the amine makes it possible to examine the role of the compound in different nervous systems.  相似文献   

3.
In experiments on rabbits trained to instrumental food procuring behaviour it was cleared up, which changes of activity of neurones of the limbic cortical area corresponded to disturbances of this behaviour (increase in time of realization and in the number of errors) caused by intraperitoneal injection of 12% ethanol solution in a dose of 1 g/kg. In comparison with control (administration of isotonic solution), the number of active cells singled out in the microelectrode track was reduced by 1/3; the pattern of behavioural specialization of neurones involved in provision of the disturbed behaviour was changed. The content of neurones of the most recent systems formed during animals learning instrumental behaviour, decreased from 27 to 11%, and of neurones providing for realization of systems formed at previous stages of individual development increased from 18 to 36%.  相似文献   

4.
Cooperation in activities of pairs of neurones situated in projection cortical areas of conditioned and unconditioned stimuli was studied in rabbits during intertrial intervals at different stages of elaboration and extinction of conditioned defensive response by means of auto- and crosscorrelation analysis of impulse fluxes. At the stage of generalization the number of pairs of neurones discharging in correlation was shown to increase a little (64 per cent) in comparison to that at the initial stage of conditioning (50 per cent) and pseudoconditioning (54 per cent). At the stage of stabilization and during extinction the number of pairs of neurones discharging in correlation decreased correspondingly to 34 and 32 per cent. Parallel analysis of correlation in neuronal discharges and simultaneously recorded electroencephalogram allowed to suppose that excitatory synchronizing influences and inhibitory cortical system play a great part in synchronization of activities of cortical neurones. Participation of these two systems is not the same at different stages of conditioning and extinction.  相似文献   

5.
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO(240)) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO(240) is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO. Although VNO(240) was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5. This delayed appearance in the accessory olfactory bulb suggests that VNO(240) is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb. During the first 2 postnatal weeks, the population of neurones expressing VNO(240) spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM. To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO. These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis. Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO(240) and NOC-1 increases during postnatal maturation.  相似文献   

6.
Behavioural specialization was analyzed of hypothalamic and limbic neurones, with their activity recorded in rabbits during food-acquisition behaviour. The neurones with activity changed during staying of the animal in a definite place of the cage or during behavioural acts, characteristic of a specific behaviour in the cage, are considered as specialized in relation to the most "new" systems, acquired by the rabbit directly during learning of the given behaviour. Neurones with the activity changed with rabbit's turns, i.e. connected with behavioural acts, which the rabbit has not specially learnt, are considered specialized in relation to more "old" inborn systems. Neurones, in which no constant connection with any part of the studied behaviour was observed, are related to the most "ancient" systems. Comparison of the number of hypothalamic and limbic neurones of different groups showed that in the cortex there were some more neurones specialized in relation to behavioural acts, which were formed directly during learning of the rabbit in the experimental cage.  相似文献   

7.
Conjugation of unit activity in the visual and sensorimotor neocortical areas was studied by means of histograms of cross- and autocorrelation in rabbits with conditioned reflex to light (1st group) and sound (2nd group). Relative number of neurones pairs acting in correlation in the areas remote from each other, in intersignal intervals both before and after stimuli did not differ in the 1st and 2nd groups. At the same time delays in neuronal discharges in one area after the other were different. In the 1st group animals there was a predominance of the number of visual area neurones discharging after sensorimotor with a delay up to 125 ms, in comparison with the number of sensorimotor area neurones discharging after the visual one. In the 2nd group rabbits the number of visual area neurones with such a delay of discharges after sensorimotor was less and, on the contrary, a predominance of sensorimotor area neurones was observed discharging after the visual one. The obtained results allow to suggest that neurones of the visual and sensorimotor neocortex areas form a single functional system in cases when conditioned and unconditioned stimuli are addressed to these areas and when only one of the studied areas is the projection zone for the combined stimuli. Organization of the neurones activity in systems in these two cases is different.  相似文献   

8.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   

9.
Hypoxia alters neuronal function and can lead to neuronal injury or death especially in the central nervous system. But little is known about the effects of hypoxia in neurones of the peripheral nervous system (PNS), which survive longer hypoxic periods. Additionally, people have experienced unpleasant sensations during ischemia which are dedicated to changes in conduction properties or changes in excitability in the PNS. However, the underlying ionic conductances in dorsal root ganglion (DRG) neurones have not been investigated in detail. Therefore we investigated the influence of moderate hypoxia (27.0 ± 1.5 mmHg) on action potentials, excitability and ionic conductances of small neurones in a slice preparation of DRGs of young rats. The neurones responded within a few minutes non-uniformly to moderate hypoxia: changes of excitability could be assigned to decreased outward currents in most of the neurones (77%) whereas a smaller group (23%) displayed increased outward currents in Ringer solution. We were able to attribute most of the reduction in outward-current to a voltage-gated K+ current which activated at potentials positive to -50 mV and was sensitive to 50 nM α-dendrotoxin (DTX). Other toxins that inhibit subtypes of voltage gated K+ channels, such as margatoxin (MgTX), dendrotoxin-K (DTX-K), r-tityustoxin Kα (TsTX-K) and r-agitoxin (AgTX-2) failed to prevent the hypoxia induced reduction. Therefore we could not assign the hypoxia sensitive K+ current to one homomeric KV channel type in sensory neurones. Functionally this K+ current blockade might underlie the increased action potential (AP) duration in these neurones. Altogether these results, might explain the functional impairment of peripheral neurones under moderate hypoxia.  相似文献   

10.
Cardioregulating neurones in the right parietal and visceral ganglia of the snail evoke postsynaptic potentials of various duration, amplitude and polarity in the auricular and ventricular myocardium. Inhibitory neurones with a marked background activity (1-2 imp/s) evoke IPSPs with a duration of 150-200 msec and a latent period of 160-220 msec in the auricle, these potentials being blocked by tubocurarine. EPSPs of approximately the same duration may be recorded in the ventricle during stimulation of the commanding neurones of the pneumostome LPa3 and PPa/3, as well as unidentified neurones. Action potentials in some other identified cardiostimulating neurones (PPa7, V1, V6) induce slow and sustained depolarization in the myocardium. Functional specificity of elements within fast and slow regulatory systems is suggested: discrete IPSPs and EPSPs account mainly for coordination of the systolic contractions of the auricle and ventricle, whereas long-lasting PSPs affect the frequency and intensity of the whole heart.  相似文献   

11.
In the mammalian brain dopamine systems play a central role in the control of movement, hormone release, emotional balance and reward. Alteration of dopaminergic neurotransmission is involved in Parkinson's disease and other movement disorders, as well as in some psychotic syndromes. This review summarises recent findings, which shed some light on signals and cellular interactions involved in the specification and maturation of the dopaminergic function during neurogenesis. In particular we will focus on three major issues: (1) the differentiation of dopaminergic neurones triggered by direct contact with the midbrain floor plate cells through the action of sonic hedgehog; (2) the neurotrophic factors acting on dopaminergic neurones; and (3) the role of target striatal cells on the survival and the axonal growth of developing or grafted dopaminergic neurones.  相似文献   

12.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

13.
Histochemistry of nitric oxide synthase in the nervous system   总被引:3,自引:0,他引:3  
Summary Nitric oxide synthase, which generates the physiological messenger molecule nitric oxide, and its associated NADPH diaphorase (NADPHd) activity are distributed throughout selective neuronal populations of the central and peripheral nervous system. Considerable evidence has been accumulated to indicate that NADPHd activity labels cells lacking neuronal nitric oxide synthase, i.e., the specificity of the reaction has to be considered for the reliable detection of the enzyme in neuronal but also non-neuronal tissue. In the present review, critical aspects of nitric oxide synthase visualization in neurones, using its NADPHd activity, are discussed. Furthermore, the organization of the central and peripheral nitric oxide synthase-containing neuronal systems is described. Nitric oxide synthase is present in local cortical and striatal neurones, hypothalamic magnocellular neurones, mesopontine cholinergic neurones, cerebellar interneurones, preganglionic sympathetic and parasympathetic neurones, neurones in parasympathetic autonomic and enteric ganglia and primary viscero-afferent neurones. Finally, injury-related alterations in nitric oxide synthase activity are briefly outlined. In this respect, the histochemistry of nitric oxide synthase may represent a valuable marker for neurochemical, if not structural, alterations observed in neural diseases, regeneration and transplantation.  相似文献   

14.
Acid-base transporters are linked to the energy metabolism via the end product of oxidative metabolism, carbon dioxide, together with carbonic anhydrase activity. In a tissue such as the brain, where some cells (neurones) are high-energy consumers when active, and other cells (astroglial cells) are destined for homeostatic and trophic tasks, transport systems may complement each other and cooperate in order to maintain physiological functions. Here, some aspects of the coupling of metabolite shuttling and acid/base-dependent transport in neurones and glial cells are discussed.  相似文献   

15.
Abalo R  Vera G  Rivera AJ  Martín MI 《Life sciences》2007,80(26):2436-2445
It is known that there is an age-related increase in gastrointestinal diseases. However, there is a lack of studies dealing with the correlation between age-related changes in function and intrinsic innervation in the gastrointestinal tract. The purpose of this work was to study this subject in the guinea pig ileum, whose functional and structural features are well known in the young age. Ileal longitudinal muscle — myenteric plexus (LMMP) preparations were obtained from 3-to 24-month-old guinea pigs. Both functional and immunohistochemical techniques were applied. The force of the contraction elicited by excitatory stimuli (electrical stimulation, acetylcholine, substance P, and opioid withdrawal) increased in parallel with an age-dependent reduction in the density of excitatory motor neurones to the longitudinal muscle, whereas other subpopulations of neurones, including inhibitory motor neurones, decreased much more slowly. Although the increase in responsiveness could be related to the age/weight-related increment in muscle bulk, some compensatory modifications to the lowered density of excitatory neurones could also be involved. On the other hand, the acute inhibitory response to morphine remained unaltered in old animals, whilst in vitro tolerance was lower. These results suggest that although age-dependent neuronal loss does not cause dramatic changes in intestinal motility, it is a factor that could contribute to disturbing normal responsiveness and, perhaps, underlie the higher frequency of gastrointestinal diseases encountered in the elderly.  相似文献   

16.
Culturing mouse cerebellar neurones (predominantly glutamatergic) in the presence of [1-(13)C]glucose for 7 days resulted in a surprisingly extensive labelling of the inhibitory neurotransmitter GABA, the average content and labelling of which were 20 +/- 4 nmol/mg protein and 20 +/- 4%, respectively. Cultures of neocortical neurones (predominantly GABAergic) had under similar conditions a GABA content and labelling of 32 +/- 2 nmol/mg protein and 21 +/- 2%. The cerebellar cultures contained only 6% glutamate decarboxylase (GAD)-positive neurones when immunolabelled using a GAD67 antibody, while a dense network of neurones in the neocortical cultures stained positively for GAD67. Exposure of the cerebellar cultures to 50 microm kainic acid (KA) which is known to eliminate vesicular release of GABA, only marginally affected GABA labelling and cellular content. Likewise this treatment had no effect on the number of GAD67-positive neurones but a massive punctate immunostaining observed in control cultures was essentially eliminated. Increasing the KA concentration to 0.5 mm in the culture medium for 7 days led to a reduction of GABA labelling and content compared to cerebellar cultures not exposed to KA. Although it is likely that this large capacity for GABA synthesis resides in the relatively few GAD-positive neurones, it seems unlikely that they could account for the large average GABA content in the cultures. Therefore it must be concluded that the newly synthesized GABA is redistributed among the majority of the cells in these cultures, i.e. the glutamatergic neurones.  相似文献   

17.
Apoptotic death results from disrupting the balance between anti-apoptotic and pro-apoptotic cellular signals. The inter- and intracellular messenger nitric oxide is known to mediate either death or survival of neurones. In the present work, cerebellar granule cells were used as a model to assess the survival role of nitric oxide and to find novel signal transduction pathways related to this role. It is reported that sustained inhibition of nitric oxide production induces apoptosis in differentiated cerebellar granule neurones and that compounds that slowly release nitric oxide significantly revert this effect. Neuronal death was also reverted by a caspase-3-like inhibitor and by a cyclic GMP analogue, thus suggesting that nitric oxide-induced activation of guanylate cyclase is essential for the survival of these neurones. We also report that the Akt/GSK-3 kinase system is a transduction pathway related to the survival action of nitric oxide, as apoptosis caused by nitric oxide deprivation is accompanied by down-regulation of this, but not of other, kinase systems. Conversely, treatments able to rescue neurones from apoptosis also counteracted this down-regulation. Furthermore, in transfection experiments, overexpression of the Akt gene significantly decreased nitric oxide deprivation-related apoptosis. These results are the first evidence for a mechanism where endogenous nitric oxide promotes neuronal survival via Akt/GSK-3 pathway.  相似文献   

18.
The effects of iontophoretically applied Na+-, K+-dependent adenosinetriphosphatase (Na+,K+-ATPase) (EC 3.6.1.3) inhibitors (ouabain, digitoxin, digitoxigenin, strophanthin K, strophanthidin, thevetin A and B, ethacrynate, and harmaline) on the depression of rat cerebral cortical neurones by noradrenaline, 5-hydroxytryptamine, and histamine have been studied. The inhibitors antagonized depressions of spontaneously active neurones evoked by these amines, but not those evoked by gamma-aminobutyric acid, adenosine, adenosine 5'-monophosphate, or calcium. The antagonistic potencies of the various inhibitors appeared to be proportional to their known potencies as inhibitors of Na+, K+-ATPase. The data therefore support the hypothesis that amines depress central neurones by activating an electrogenic sodium pump.  相似文献   

19.
20.
Abstract

In slices from the rat brain, extracellular recordings were obtained from single neurones located in the lateral septum, an area known to receive a vasopressinergic innervation. Approximately half of the neurones tested responded to vasopressin by a concentration-dependent increase in firing rate, the lowest effective concentration being in the order of 2 nM. The effect of vasopressin was blocked by a synthetic structural analogue possessing vasopressor and oxytocic antagonistic properties on peripheral vasopressin and oxytocin receptors. Oxytocin had a weak effect in firing septal neurones, whereas a selective oxytocic agonist was totally ineffective. The action of vasopressin on neuronal firing was mimicked by a vasopressor agonist (Phe2-Orn8-VT) but not by a selective antidiuretic agonist (dDAVP). These results indicate that the vasopressin receptors present in rat septum are V1 (vasopressor type) rather than V2 (antidiuretic type) receptors. In addition, we conclude that these receptors, when occupied, lead to increased firing of lateral septal neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号