首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The hematopoietic cell-specific protein Vav1 is a substrate of tyrosine kinases activated following engagement of many receptors, including FcepsilonRI. Vav1-deficient mice contain normal numbers of mast cells but respond more weakly than their normal counterparts to a passive systemic anaphylaxis challenge. Vav1-deficient bone marrow-derived mast cells also exhibited reduced degranulation and cytokine production, although tyrosine phosphorylation of FcepsilonRI, Syk, and LAT (linker for activation of T cells) was normal. In contrast, tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) and PLCgamma2 and calcium mobilization were markedly inhibited. Reconstitution of deficient mast cells with Vav1 restored normal tyrosine phosphorylation of PLCgamma1 and PLCgamma2 and calcium responses. Thus, Vav1 is essential to FcepsilonRI-mediated activation of PLCgamma and calcium mobilization in mast cells. In addition to its known role as an activator of Rac1 GTPases, these findings demonstrate a novel function for Vav1 as a regulator of PLCgamma-activated calcium signals.  相似文献   

2.
The aim of this study was to evaluate whether citreorosein (CIT), a naturally occurring anthraquinone isolated from Polygoni cuspidati (P. cuspidati) radix, modulates degranulation and 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in mast cells. Cit suppresses both degranulation and the generation of LTC(4) in a dose-dependent manner in stem cell factor (SCF)-mediated mouse bone marrow-derived mast cells (BMMCs). With regard to its molecular mechanism of action, we investigated the effects of CIT on intracellular signaling and mast cell activation employing BMMCs. Binding of SCF to c-Kit on mast cell membranes induced increases in intrinsic tyrosine kinase Syk activity and activation of multiple downstream events including phosphorylation of phospholipase Cγ (PLCγ), mobilization of intracellular Ca(2+), phosphatidylinositol 3-kinase (PI3K), Akt, MAP kinases (MAPKs), translocation of phospho-phospholipase A(2) (PLA(2)) and 5-LO. The results from the biochemical analysis demonstrate that CIT attenuates degranulation and LTC(4) generation through the suppression of multiple step signaling and would be beneficial for the prevention of allergic inflammation.  相似文献   

3.
Engagement of the FcepsilonRI in mast cells and basophils leads to a rapid tyrosine phosphorylation of the transmembrane adaptors LAT (linker for activation of T cells) and NTAL (non-T cell activation linker, also called LAB or LAT2). NTAL regulates activation of mast cells by a mechanism, which is incompletely understood. Here we report properties of rat basophilic leukemia cells with enhanced or reduced NTAL expression. Overexpression of NTAL led to changes in cell morphology, enhanced formation of actin filaments and inhibition of the FcepsilonRI-induced tyrosine phosphorylation of the FcepsilonRI subunits, Syk kinase and LAT and all downstream activation events, including calcium and secretory responses. In contrast, reduced expression of NTAL had little effect on early FcepsilonRI-induced signaling events but inhibited calcium mobilization and secretory response. Calcium response was also repressed in Ag-activated cells defective in Grb2, a major target of phosphorylated NTAL. Unexpectedly, in cells stimulated with thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) ATPase, the amount of cellular NTAL directly correlated with the uptake of extracellular calcium even though no enhanced tyrosine phosphorylation of NTAL was observed. The combined data indicate that NTAL regulates FcepsilonRI-mediated signaling at multiple steps and by different mechanisms. At early stages NTAL interferes with tyrosine phosphorylation of several substrates and formation of signaling assemblies, whereas at later stages it regulates the activity of store-operated calcium channels through a distinct mechanism independent of enhanced NTAL tyrosine phosphorylation.  相似文献   

4.
5.
Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.  相似文献   

6.
The first step in immunoreceptor signaling is represented by ligand-dependent receptor aggregation, followed by receptor phosphorylation mediated by tyrosine kinases of the Src family. Recently, sphingolipid- and cholesterol-rich plasma membrane microdomains, called lipid rafts, have been identified and proposed to function as platforms where signal transduction molecules may interact with the aggregated immunoreceptors. Here we show that aggregation of the receptors with high affinity for immunoglobulin E (FcepsilonRI) in mast cells is accompanied by a co-redistribution of the Src family kinase Lyn. The co-redistribution requires Lyn dual fatty acylation, Src homology 2 (SH2) and/or SH3 domains, and Lyn kinase activity, in cis or in trans. Palmitoylation site-mutated Lyn, which is anchored to the plasma membrane but exhibits reduced sublocalization into lipid rafts, initiates the tyrosine phosphorylation of FcepsilonRI subunits, Syk protein tyrosine kinase, and the linker for activation of T cells, along with an increase in the concentration of intracellular Ca(2+). However, Lyn mutated in both the palmitoylation and myristoylation sites does not anchor to the plasma membrane and is incapable of initiating FcepsilonRI phosphorylation and early signaling events. These data, together with our finding that a constitutively tyrosine-phosphorylated FcepsilonRI does not exhibit an increased association with lipid rafts, suggest that FcepsilonRI phosphorylation and early activation events can be initiated outside of lipid rafts.  相似文献   

7.
Earlier studies, including our own, revealed that activation of mast cells is accompanied by production of reactive oxygen species (ROS) that help to mediate the release of the inflammatory mediators, including histamine and eicosanoids. However, little is known about the mechanisms of ROS production, including the species of oxidants produced. In this study we show that in both the RBL-2H3 mast cell line and bone marrow-derived mast cells, FcepsilonRI cross-linking stimulates intracellular oxidative burst, including hydrogen peroxide (H(2)O(2)) production, as defined with the oxidant-sensitive dyes dichlorofluorescein and scopoletin and the selective scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one). The oxidative burst was observed immediately after stimulation and was most likely due to an NAD(P)H oxidase. Experiments using selective pharmacological inhibitors demonstrated that activation of tyrosine kinases and phosphatidylinositol-3-kinase is required for induction of the oxidative burst. Blockade of the oxidative burst by diphenyleneiodonium impaired the release of preformed granular mediators, such as histamine and beta-hexosaminidase, and the secretion of newly synthesized leukotriene C(4), whereas selective scavenging H(2)O(2) by ebselen impaired leukotriene C(4) secretion, but not degranulation. Sustained elevation of cytosolic calcium through store-operated calcium entry was totally abolished when ROS production was blocked. In contrast, selective depletion of H(2)O(2) caused a considerable decrease and delay of the calcium response. Finally, tyrosine phosphorylation of phospholipase Cgamma and the linker for activation of T cells, an event required for calcium influx, was suppressed by diphenyleneiodonium and ebselen. These studies demonstrate that activation of the intracellular oxidative burst is an important regulatory mechanism of mast cell responses.  相似文献   

8.
Janus kinase 3 (JAK3), a member of the Janus family protein-tyrosine kinases, is expressed in mast cells, and its enzymatic activity is enhanced by IgE receptor/FcepsilonRI cross-linking. Selective inhibition of JAK3 in mast cells with 4-(4'-hydroxylphenyl)-amino-6, 7-dimethoxyquinazoline) (WHI-P131) blocked the phospholipase C activation, calcium mobilization, and activation of microtubule-associated protein kinase after lgE receptor/FcepsilonRI cross-linking. Treatment of IgE-sensitized rodent as well as human mast cells with WHI-P131 effectively inhibited the activation-associated morphological changes, degranulation, and proinflammatory mediator release after specific antigen challenge without affecting the functional integrity of the distal secretory machinery. In vivo administration of the JAK3 inhibitor WHI-P131 prevented mast cell degranulation and development of cutaneous as well as systemic fatal anaphylaxis in mice at nontoxic dose levels. Thus, JAK3 plays a pivotal role in IgE receptor/FcepsilonRI-mediated mast cell responses, and targeting JAK3 with a specific inhibitor, such as WHI-P131, may provide the basis for new and effective treatment as well as prevention programs for mast cell-mediated allergic reactions.  相似文献   

9.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   

10.
Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) have been shown to modulate a number of inflammatory disorders. Mast cells play a critical role in the initiation and maintenance of inflammatory responses. However, the effects of PUFAs on mast cell functions have not been fully addressed. We here-in examined the effects of PUFAs on the high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation using RBL-2H3 cells, a rat mast cell line, that were cultured in the medium containing palmitic acid (PA), AA, or the AA analogs mead acid (MA) and eicosapentaenoic acid (EPA). In AA-supplemented cells, the FcepsilonRI-mediated beta-hexosamidase and TNF-alpha release, calcium (Ca(2+)) influx, and some protein tyrosine phosphorylations including Syk and linker for activation of T cells (LAT) were enhanced, whereas, in MA- or PA-supplemented cells, they were not changed when compared with cells cultured in control medium. In EPA-supplemented cells, the enhancements of beta-hexosamidase release and protein tyrosine phosphorylations were observed. Furthermore, in AA- or EPA-supplemented cells, FcepsilonRI-mediated intracellular production of reactive oxygen species (ROS) that is required for the tyrosine phosphorylation of LAT and Ca(2+) influx were enhanced when compared with the other cells. Thus, preincubation of AA or EPA augmented FcepsilonRI-mediated degranulation in mast cells by affecting early events of FcepsilonRI signal transduction, which might be associated with the change of fatty acid composition of the cell membrane and enhanced production of ROS. The results suggest that some PUFAs can modulate FcepsilonRI-mediated mast cell activation and might affect FcepsilonRI/mast cell-mediated inflammation, such as allergic reaction.  相似文献   

11.
Engagement of the FcepsilonRI expressed on mast cells induces the production of phosphatidylinositol 3, 4, 5-trisphosphate by PI3K, which is essential for the functions of the cells. PTEN (phosphatase and tensin homologue deleted on chromosome ten) directly opposes PI3K by dephosphorylating phosphatidylinositol 3, 4, 5-trisphosphate at the 3' position. In this work we used a lentivirus-mediated short hairpin RNA gene knockdown method to study the role of PTEN in CD34(+) peripheral blood-derived human mast cells. Loss of PTEN caused constitutive phosphorylation of Akt, p38 MAPK, and JNK, as well as cytokine production and enhancement in cell survival, but not degranulation. FcepsilonRI engagement of PTEN-deficient cells augmented signaling downstream of Src kinases and increased calcium flux, degranulation, and further enhanced cytokine production. PTEN-deficient cells, but not control cells, were resistant to inhibition of cytokine production by wortmannin, a PI3K inhibitor. The findings demonstrate that PTEN functions as a key regulator of mast cell homeostasis and FcepsilonRI-responsiveness.  相似文献   

12.
Scaffolding adapter Grb2-associated binder 2 (Gab2) is a key component of FcepsilonRI signaling in mast cells, required for the activation of PI3K. To understand how Gab2 is activated in FcepsilonRI signaling, we asked which protein tyrosine kinase is required for Gab2 phosphorylation. We found that Gab2 tyrosyl phosphorylation requires Lyn and Syk. In agreement with published results, we found that Fyn also contributes to Gab2 tyrosyl phosphorylation. However, Syk activation is defective in Fyn(-/-) mast cells, suggesting that Syk is the proximal kinase responsible for Gab2 tyrosyl phosphorylation. Then, we asked which domains in Gab2 are required for Gab2 tyrosyl phosphorylation. We found that the Grb2-Src homology 3 (SH3) binding sites are required for, whereas the pleckstrin homology (PH) domain contributes to, Gab2 tyrosyl phosphorylation. Using a protein/lipid overlay assay, we determined that the Gab2 PH domain preferentially binds the PI3K lipid products, PI3, 4,5P3 and PI3, 4P2. Furthermore, the Grb2-SH3 binding sites and PH domain binding to PI3K lipid products are required for Gab2 function in FcepsilonRI-evoked degranulation and Akt activation. Our data strongly suggest a model for Gab2 action in FcepsilonRI signaling. The Grb2 SH3 binding sites play a critical role in bringing Gab2 to FcepsilonRI, whereupon Gab2 becomes tyrosyl-phosphorylated in a Syk-dependent fashion. Phosphorylated Gab2 results in recruitment and activation of PI3K, whose lipid products bind the PH domain of Gab2 and acts in positive feedback loop for sustained PI3K recruitment and phosphatidylinositol-3,4,5-trisphosphate production, required for FcepsilonRI-evoked degranulation of mast cells.  相似文献   

13.
Crosslinking of multivalent antigen bound IgE transduces FcepsilonRI mediated signaling cascades, which activate nonreceptor-type protein-tyrosine kinases and subsequent tyrosine phosphorylation of cellular proteins, and these are critical elements for degranulation in mast cells. We cloned a novel adaptor molecule, signal transducing adaptor protein (STAP)-2 containing PH and SH2-like domains as a c-fms interacting protein. STAP-2 was identical to a recently cloned adaptor molecule, BKS, a substrate of BRK (breast tumor kinase) tyrosine kinase, although its function is still unknown. To examine a novel function of STAP-2/BSK, we expressed STAP-2/BSK or its mutants in rat basophilic leukemia RBL-2H3 cells. Overexpression of STAP-2/BSK resulted in a suppression of FcepsilonRI-mediated calcium mobilization and degranulation. FcepsilonRI-induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) but not Syk was significantly suppressed in these cells. Furthermore, STAP-2/BSK associated with PLC-gamma in vivo. These data indicate that STAP-2/BSK negatively controls the FcepsilonRI-mediated calcium mobilization and degranulation by direct modulation of tyrosine phosphorylation of PLC-gamma.  相似文献   

14.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

15.
Upon cross-linking by antigen, the high affinity receptor for immunoglobulin E (IgE), FcepsilonRI, is phosphorylated by the Src family tyrosine kinase Lyn to initiate mast cell signaling, leading to degranulation. Using fluorescence correlation spectroscopy (FCS), we observe stimulation-dependent associations between fluorescently labeled IgE-FcepsilonRI and Lyn-EGFP on individual cells. We also simultaneously measure temporal variations in the lateral diffusion of these proteins. Antigen-stimulated interactions between these proteins detected subsequent to the initiation of receptor phosphorylation exhibit time-dependent changes, suggesting multiple associations between FcepsilonRI and Lyn-EGFP. During this period, we also observe a persistent decrease in Lyn-EGFP lateral diffusion that is dependent on Src family kinase activity. These stimulated interactions are not observed between FcepsilonRI and a chimeric EGFP that contains only the membrane-targeting sequence from Lyn. Our results reveal real-time interactions between Lyn and cross-linked FcepsilonRI implicated in downstream signaling events. They demonstrate the capacity of FCS cross-correlation analysis to investigate the mechanism of signaling-dependent protein-protein interactions in intact, living cells.  相似文献   

16.
Mast cells function as the initiator of the allergic reaction and play a role in the innate immune system. Aggregation of the high affinity IgE receptor (FcepsilonRI) on mast cells triggers degranulation with the release of chemical mediators such as histamine, production of cytokines and leukotrienes. FcepsilonRI signals by activating proximal non-receptor type of protein-tyrosine kinases, Lyn, Syk, Btk and Fyn. Activated tyrosine kinases then phosphorylate their specific substrates which include other enzymes and adaptor proteins and assemble these cytoplasmic signaling molecules for cellular activation. The adaptor proteins have multiple domains that allow binding to effector molecules and therefore act as positive or negative regulators controlling FcepsilonRI signaling. Deletion of the adaptor proteins such as LAT, SLP-76 or Gab2 resulted in decreased FcepsilonRI-mediated anaphylactic reaction in vivo. Functional analysis of adaptor proteins has raised the possibility that they may be new targets for the discovery of anti-allergic drugs.  相似文献   

17.
Tyrosine phosphorylation of the high affinity immunoglobulin (Ig)E receptor (FcepsilonRI) by the Src family kinase Lyn is the first known biochemical step that occurs during activation of mast cells and basophils after cross-linking of FcepsilonRI by antigen. The hypothesis that specialized regions in the plasma membrane, enriched in sphingolipids and cholesterol, facilitate the coupling of Lyn and FcepsilonRI was tested by investigating functional and structural effects of cholesterol depletion on Lyn/FcepsilonRI interactions. We find that cholesterol depletion with methyl-beta-cyclodextrin substantially reduces stimulated tyrosine phosphorylation of FcepsilonRI and other proteins while enhancing more downstream events that lead to stimulated exocytosis. In parallel to its inhibition of tyrosine phosphorylation, cholesterol depletion disrupts the interactions of aggregated FcepsilonRI and Lyn on intact cells and also disrupts those interactions with detergent-resistant membranes that are isolated by sucrose gradient ultracentrifugation of lysed cells. Importantly, cholesterol repletion restores receptor phosphorylation together with the structural interactions. These results provide strong evidence that membrane structure, maintained by cholesterol, plays a critical role in the initiation of FcepsilonRI signaling.  相似文献   

18.
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.  相似文献   

19.
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.  相似文献   

20.
Mast cells play a central role in type I hypersensitivity reactions and allergic disorders such as anaphylaxis and asthma. Activation of mast cells, through a cascade of phosphorylation events, leads to the release of mediators of the early phase allergic response. Understanding the molecular architecture underlying mast cell signaling may provide possibilities for therapeutic intervention in asthma and other allergic diseases. Although many details of mast cell signaling have been described previously, a systematic, quantitative analysis of the global tyrosine phosphorylation events that are triggered by activation of the mast cell receptor is lacking. In many cases, the involvement of particular proteins in mast cell signaling has been established generally, but the precise molecular mechanism of the interaction between known signaling proteins often mediated through phosphorylation is still obscure. Using recently advanced methodologies in mass spectrometry, including automation of phosphopeptide enrichments and detection, we have now substantially characterized, with temporal resolution as short as 10 s, the sites and levels of tyrosine phosphorylation across 10 min of FcepsilonRI-induced mast cell activation. These results reveal a far more extensive array of tyrosine phosphorylation events than previously known, including novel phosphorylation sites on canonical mast cell signaling molecules, as well as unexpected pathway components downstream of FcepsilonRI activation. Furthermore, our results, for the first time in mast cells, reveal the sequence of phosphorylation events for 171 modification sites across 121 proteins in the MCP5 mouse mast cell line and 179 modification sites on 117 proteins in mouse bone marrow-derived mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号