首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30min after Cl(2) exposure. Exposure of rats to Cl(2) gas (400ppm, 30min) significantly increased ALI and caused RAS 6-24h postexposure as indexed by BAL sampling of lung surface protein and polymorphonucleocytes (PMNs) and increased airway resistance and elastance before and after methacholine challenge. Intraperitoneal nitrite decreased Cl(2)-dependent increases in BAL protein but not PMNs. In contrast im nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase-dependent manner. Histological evaluation of airways 6h postexposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl(2)-exposed rats. Both ip and im nitrite improved airway histology compared to Cl(2) gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with im compared to ip nitrite. Airways were rendered more sensitive to methacholine-induced resistance and elastance after Cl(2) gas exposure. Interestingly, im nitrite, but not ip nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of im and ip therapy showed a twofold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl(2) exposure-dependent increases in circulating leukocytes. Halving the im nitrite dose resulted in no effect in PMN accumulation but significant reduction of BAL protein levels, indicating a distinct nitrite dose dependence for inhibition of Cl(2)-dependent lung permeability and inflammation. These data highlight the potential for nitrite as a postexposure therapeutic for Cl(2) gas-induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics.  相似文献   

2.
The intranasal administration of lipopolysaccharide (LPS) to mice triggers a huge influx of polymorphonuclear neutrophils (PMNs) into the airway spaces, with a peak at 48 h. The increase in protein concentration, an index of microvascular permeability, displayed a different pattern, i.e., a first increase with a plateau between 3 and 24 h followed by a second increase peaking at 72 h. When mice were depleted of circulating PMNs, the increase in protein concentration was inhibited at 3 h but not at 24 h. The lack of PMN involvement at 24 h was confirmed by 1) in situ activation of exudated PMNs present in the air spaces on intranasal administration of LPS and 2) induction of the migration of PMNs sequestered in lung vessels on intraperitoneal administration of LPS. These findings show that the increase in microvascular permeability during lung inflammation is due to at least two distinct mechanisms, an early one related to the neutrophil influx and a delayed one occurring even under neutropenic conditions.  相似文献   

3.
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n?=?8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20?mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100?mg/kg) 1?h before the ozone exposure (2.5?ppm, 3?h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24?h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.  相似文献   

4.
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.  相似文献   

5.
This study was designed to investigate the mechanisms through which tumor necrosis factor (Tnf) modulates ozone (O(3))-induced pulmonary injury in susceptible C57BL/6J (B6) mice. B6 [wild-type (wt)] mice and B6 mice with targeted disruption (knockout) of the genes for the p55 TNF receptor [TNFR1(-/-)], the p75 TNF receptor [TNFR2(-/-)], or both receptors [TNFR1/TNFR2(-/-)] were exposed to 0.3 parts/million O(3) for 48 h (subacute), and lung responses were determined by bronchoalveolar lavage. All TNFR(-/-) mice had significantly less O(3)-induced inflammation and epithelial damage but not lung hyperpermeability than wt mice. Compared with air-exposed control mice, O(3) elicited upregulation of lung TNFR1 and TNFR2 mRNAs in wt mice and downregulated TNFR1 and TNFR2 mRNAs in TNFR2(-/-) and TNFR1(-/-) mice, respectively. Airway hyperreactivity induced by acute O(3) exposure (2 parts/million for 3 h) was diminished in knockout mice compared with that in wt mice, although lung inflammation and permeability remained elevated. Results suggested a critical role for TNFR signaling in subacute O(3)-induced pulmonary epithelial injury and inflammation and in acute O(3)-induced airway hyperreactivity.  相似文献   

6.
To determine the role of interleukin (IL)-6 in the increased ozone (O3)-induced inflammation and injury observed in obese vs. lean mice, lean wild-type and leptin-deficient obese (ob/ob) mice were injected with anti-IL-6 antibody (Ab) or isotype control Ab 24 h before exposure to either O3 (2 ppm for 3 h) or room air. Four or 24 h after O3 exposure, bronchoalveolar lavage (BAL) was performed, and the lungs were harvested for Western blotting. Anti-IL-6 Ab caused substantial reductions in O3-induced increases in BAL IL-6 in mice of both genotypes. Four hours following O3, ob/ob mice had increased BAL neutrophils compared with controls, and anti-IL-6-Ab virtually abolished this difference. At 24 h, O3-induced increases in BAL protein and BAL serum albumin were augmented in ob/ob vs. wild-type mice, and anti-IL-6 Ab ablated these obesity-related differences in epithelial barrier injury. O3 increased tyrosine phosphorylation of STAT-3 and STAT-1. There was no effect of obesity on STAT-3 phosphorylation, whereas obesity decreased STAT-1 expression, resulting in reduced STAT-1 phosphorylation. IL-6 neutralization did not alter STAT-3 or STAT-1 phosphorylation in ob/ob or wild-type mice. O3 increased BAL leukemia inhibitory factor (LIF) to a greater extent in obese than in lean mice, and LIF may account for effects on STAT phosphorylation. Our results suggest that IL-6 plays a complex role in pulmonary responses to O3, a role that differs between wild-type and ob/ob mice. Moreover, obesity-related differences in activation of STAT proteins may contribute to some of the differences in the response of obese vs. lean mice.  相似文献   

7.
High concentrations of neutrophil defensins from airway and blood have been reported in patients with inflammatory lung diseases, but their exact role is unclear. We investigated the direct effect of defensins on the lungs of mice. Intratracheal instillation of purified defensins (5-30 mg/kg) induced a progressive reduction in peripheral arterial O(2) saturation, increased lung permeability, and enhanced the lung cytochrome c content. These indexes of acute lung dysfunction were associated with an increased total cell number and a significant neutrophil influx into the lung [5.1 +/- 0.04% in control vs. 48.6 +/- 12.7% in the defensin (30 mg/kg) group, P < 0.05]. Elastase concentrations in the bronchoalveolar lavage (BAL) fluids increased from 38 +/- 11 ng/ml (control) to 80 +/- 4 ng/ml (defensins, P < 0.05). Five hours after defensin instillation, concentrations of tumor necrosis factor-alpha and macrophage inflammatory protein-2 in BAL fluid were significantly increased. High levels of monocyte chemoattractant protein-1 in BAL fluid and plasma were also found after defensin stimulation. We conclude that intratracheal instillation of defensins causes acute lung inflammation and dysfunction, suggesting that high concentrations of defensins in the airways may play an important role in the pathogenesis of inflammatory lung diseases.  相似文献   

8.

Introduction

Chronic exposure to high levels of ozone induces emphysema and chronic inflammation in mice. We determined the recovery from ozone-induced injury and whether an antioxidant, N-acetylcysteine (NAC), could prevent or reverse the lung damage.

Methods

Mice were exposed to ozone (2.5 ppm, 3 hours/12 exposures, over 6 weeks) and studied 24 hours (24h) or 6 weeks (6W) later. Nac (100 mg/kg, intraperitoneally) was administered either before each exposure (preventive) or after completion of exposure (therapeutic) for 6 weeks.

Results

After ozone exposure, there was an increase in functional residual capacity, total lung volume, and lung compliance, and a reduction in the ratio of forced expiratory volume at 25 and 50 milliseconds to forced vital capacity (FEV25/FVC, FEV50/FVC). Mean linear intercept (Lm) and airway hyperresponsiveness (AHR) to acetylcholine increased, and remained unchanged at 6W after cessation of exposure. Preventive NAC reduced the number of BAL macrophages and airway smooth muscle (ASM) mass. Therapeutic NAC reversed AHR, and reduced ASM mass and apoptotic cells.

Conclusion

Emphysema and lung function changes were irreversible up to 6W after cessation of ozone exposure, and were not reversed by NAC. The beneficial effects of therapeutic NAC may be restricted to the ASM.  相似文献   

9.
Capillary leakage and alveolar edema are hallmarks of acute lung injury (ALI). Neutrophils and serum macromolecules enter alveoli, promoting inflammation. Vascular endothelial growth factor (VEGF) causes plasma leakage in extrapulmonary vessels. Angiopoietin (Ang)-1 and -4 stabilize vessels, attenuating capillary leakage. We hypothesized that VEGF and Ang-1 and -4 modulate vessel leakage in the lung, contributing to the pathogenesis of ALI. We examined a murine model of lipopolysaccharide (LPS)-induced ALI. C57BL/6 and 129/J mice were studied at baseline and 24, 48, and 96 h after single or multiple doses of aerosolized LPS. Both strains exhibited time- and dose-dependent increases in inflammation and a deterioration of lung mechanics. Bronchoalveolar lavage (BAL) protein levels increased significantly, suggesting capillary leakage. Increased BAL neutrophil and total protein content correlated with time-dependent increased tissue VEGF and decreased Ang-1 and -4 levels, with peak VEGF and minimum Ang-1 and -4 expression after 96 h of LPS challenge. These data suggest that changes in the balance between VEGF and Ang-1 and -4 after LPS exposure may modulate neutrophil influx, protein leakage, and alveolar flooding during early ALI.  相似文献   

10.

Background

Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury.

Methods

Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure.

Results

Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU.

Conclusion

Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.  相似文献   

11.

Background

Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways.

Methodology/Principal Findings

Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment.

Conclusions/Significance

These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.  相似文献   

12.
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.  相似文献   

13.
The retinoid-related orphan receptor alpha (RORalpha), a member of the ROR subfamily of nuclear receptors, has been implicated in the control of a number of physiological processes, including the regulation of several immune functions. To study the potential role of RORalpha in the regulation of innate immune responses in vivo, we analyzed the induction of airway inflammation in response to lipopolysaccharide (LPS) challenge in wild-type and staggerer (RORalpha(sg/sg)) mice, a natural mutant strain lacking RORalpha expression. Examination of hematoxylin and eosin-stained lung sections showed that RORalpha(sg/sg) mice displayed a higher degree of LPS-induced inflammation than wild-type mice. Bronchoalveolar lavage (BAL) was performed at 3, 16, and 24 h after LPS exposure to monitor the increase in inflammatory cells and the level of several cytokines/chemokines. The increased susceptibility of RORalpha(sg/sg) mice to LPS-induced airway inflammation correlated with a higher number of total cells and neutrophils in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. In addition, IL-1beta, IL-6, and macrophage inflammatory protein-2 were appreciably more elevated in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. The enhanced susceptibility of RORalpha(sg/sg) mice appeared not to be due to a repression of IkappaBalpha expression. Our observations indicate that RORalpha(sg/sg) mice are more susceptible to LPS-induced airway inflammation and are in agreement with the hypothesis that RORalpha functions as a negative regulator of LPS-induced inflammatory responses.  相似文献   

14.
Exogenous carbon monoxide (CO) has anti-inflammatory and cytoprotective properties that show promise in the treatment of numerous pulmonary diseases. However, the effectiveness of CO in acute pulmonary injury associated with direct lung insult has not been shown conclusively. The purpose of this study was to determine if exogenous CO would modulate the pulmonary inflammation and lung injury that develops after acid aspiration. Groups of mice were given intratracheal (IT) injections of either saline or an acidic solution. After the IT injection, some of the mice in each group were allowed to spontaneously inhale CO (500 ppm). Mice exposed to CO for 6 h after IT acid had a significant decrease in bronchoalveolar lavage (BAL) fluid neutrophil counts and in histological evidence of lung injury. These results could not be explained by changes in BAL fluid chemokine levels or altered CXCR2 expression. The reduced neutrophil recruitment was associated with a decrease in the percentage of peripheral blood neutrophils expressing CD11b protein. However, within 24 h, the BAL neutrophil counts increased and were not different from animals without CO exposure. In addition, indices of vascular integrity were not different between animals with acid aspiration regardless of CO exposure at the later time point. These results showed that CO can modulate the early development of acute lung inflammation in this model of acid aspiration. Although these effects were eventually overwhelmed, the results suggest that CO may have efficacy during the initial treatment of aspiration lung injury.  相似文献   

15.
Adiponectin is a cytokine with both proinflammatory and anti-inflammatory properties that is expressed in epithelial cells in the airway in chronic obstructive pulmonary disease-emphysema (COPD-E). To determine whether adiponectin modulates levels of lung inflammation in tobacco smoke-induced COPD-E, we used a mouse model of COPD-E in which either adiponectin-deficient or wild-type (WT) mice were exposed to tobacco smoke for 6 mo. Outcomes associated with tobacco smoke-induced COPD-E were quantitated including lung inflammation [bronchoalveolar lavage (BAL) and total and differential cell count], lung mediators of inflammation (cytokines and chemokines), air space enlargement (i.e., linear intercept), and lung function (tissue elastance) in the different groups of mice. Whereas exposure of WT mice to tobacco smoke for 6 mo induced significant lung inflammation (increased total BAL cells, neutrophils, and macrophages), adiponectin-deficient mice had minimal BAL inflammation when exposed to tobacco smoke for 6 mo. In addition, whereas chronic tobacco-exposed WT mice had significantly increased levels of lung mediators of inflammation [i.e., TNF-α, keratinocyte-derived chemokine (KC), and adiponectin] as well as significantly increased air space enlargement (increased linear intercept) and decreased tissue elastance, exposure of adiponectin-deficient mice to chronic tobacco smoke resulted in no further increase in lung mediators, air space enlargement, or tissue elastance. In vitro studies demonstrated that BAL macrophages derived from adiponectin-deficient mice incubated in media containing tobacco smoke expressed minimal TNF-α or KC compared with BAL macrophages from WT mice. These studies suggest that adiponectin plays an important proinflammatory role in tobacco smoke-induced COPD-E.  相似文献   

16.
We previously reported that genetically obese mice exhibit innate airway hyperresponsiveness (AHR) and enhanced ozone (O(3))-induced pulmonary inflammation. Such genetic deficiencies in mice are rare in humans, and they may not be representative of human obesity. Thus the purpose of this study was to determine the pulmonary phenotype of mice with diet-induced obesity (DIO), which more closely mimics the cause of human obesity. Therefore, wild-type C57BL/6 mice were reared from the time of weaning until at least 30 wk of age on diets in which either 10 or 60% of the calories are derived from fat in the form of lard. Body mass was approximately 40% greater in mice fed 60 vs. 10% fat diets. Baseline airway responsiveness to intravenous methacholine, measured by forced oscillation, was greater in mice fed 60 vs. 10% fat diets. We also examined lung permeability and inflammation after exposure to room air or O(3) (2 parts/million for 3 h), an asthma trigger. Four hours after the exposure ended, O(3)-induced increases in bronchoalveolar lavage fluid protein, interleukin-6, KC, macrophage inflammatory protein-2, interferon-gamma-inducible protein-10, and eotaxin were greater in mice fed 60 vs. 10% fat diets. Innate AHR and augmented responses to O(3) were not observed in mice raised from weaning until 20-22 wk of age on a 60% fat diet. These results indicate that mice with DIO exhibit innate AHR and enhanced O(3)-induced pulmonary inflammation, similar to genetically obese mice. However, mice with DIO must remain obese for an extended period of time before this pulmonary phenotype is observed.  相似文献   

17.
Ozone (O(3)), a common air pollutant, induces airway inflammation and airway hyperresponsiveness. In mice, the neutrophil chemokines KC and macrophage inflammatory protein-2 (MIP-2) are expressed in the lungs following O(3) exposure. The purpose of this study was to determine whether CXCR2, the receptor for these chemokines, is essential to O(3)-induced neutrophil recruitment, injury to lungs, and increases in respiratory system responsiveness to methacholine (MCh). O(3) exposure (1 ppm for 3 h) increased the number of neutrophils in the bronchoalveolar lavage fluid (BALF) of wild-type (BALB/c) and CXCR2-deficient mice. However, CXCR2-deficient mice had significantly fewer emigrated neutrophils than did wild-type mice. The numbers of neutrophils in the blood and concentrations of BALF KC and MIP-2 did not differ between genotypes. Together, these data suggest CXCR2 is essential for maximal chemokine-directed migration of neutrophils to the air spaces. In wild-type mice, O(3) exposure increased BALF epithelial cell numbers and total protein levels, two indirect measures of lung injury. In contrast, in CXCR2-deficient mice, the number of BALF epithelial cells was not increased by O(3) exposure. Responses to inhaled MCh were measured by whole body plethysmography using enhanced pause as the outcome indicator. O(3) exposure increased responses to inhaled MCh in both wild-type and CXCR2-deficient mice 3 h after O(3) exposure. However, at 24 h after exposure, responses to inhaled MCh were elevated in wild-type but not CXCR2-deficient mice. These results indicate CXCR2 is essential for maximal neutrophil recruitment, epithelial cell sloughing, and persistent increases in MCh responsiveness after an acute O(3) exposure.  相似文献   

18.

Background

Cigarette smoke (CS) is known to initiate a cascade of mediator release and accumulation of immune and inflammatory cells in the lower airways. We investigated and compared the effects of CS on upper and lower airways, in a mouse model of subacute and chronic CS exposure.

Methods

C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. Bronchoalveolar lavage fluid (BAL) was obtained and tissue cryosections from nasal turbinates were stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3α, RORc, IL-17, FoxP3, and TGF-β1 in nasal turbinates and lungs by RT-PCR.

Results

In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, MCP-1, MIP-3α and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was a significant downregulation of inflammation in the upper airways, while on the contrary, lower airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress inflammation occur earlier and are more efficient in nose than in lungs.

Conclusions

Altogether, these data demonstrate that CS induced inflammation may be differently regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new therapeutic targets in this disease model.  相似文献   

19.
We reported previously that mice obese as a result of leptin deficiency (ob/ob) have enhanced ozone (O3)-induced airway hyperresponsiveness (AHR) and inflammation compared with wild-type (C57BL/6) controls. To determine whether this increased response to O3 was independent of the modality of obesity, we examined O3-induced AHR and inflammation in Cpe(fat) mice. These mice are obese as a consequence of a mutation in the gene encoding carboxypeptidase E (Cpe), an enzyme important in processing prohormones and proneuropeptides involved in satiety and energy expenditure. Airway responsiveness to intravenous methacholine, measured by forced oscillation, was increased in Cpe(fat) vs. wild-type mice after air exposure. In addition, compared with air exposure, airway responsiveness was increased 24 h after O3 exposure (2 ppm for 3 h) in Cpe(fat) but not in wild-type mice. Compared with air-exposed controls, O3 exposure increased bronchoalveolar lavage fluid (BALF) protein, IL-6, KC, MIP-2, MCP-1, and soluble TNF receptors (sTNFR1 and sTNFR2) as well as BALF neutrophils. With the exception of sTNFR1 and sTNFR2, all of these outcome indicators were greater in Cpe(fat) vs. wild-type mice. Serum sTNFR1, sTNFR2, MCP-1, leptin, and blood leukocytes were elevated in Cpe(fat) compared with wild-type mice even in the absence of O3 exposure, similar to the chronic systemic inflammation observed in human obesity. These results indicate that increased O3-induced AHR and inflammation are consistent features of obese mice, regardless of the modality of obesity. These results also suggest that chronic systemic inflammation may enhance airway responses to O3 in obese mice.  相似文献   

20.
Exposure of the lung to lipopolysaccharide (LPS) or silica results in an activation of alveolar macrophages (AMs), recruitment of polymorphonuclear leukocytes (PMNs) into bronchoalveolar spaces, and the production of free radicals. Nitric oxide (NO) is one of the free radicals generated by bronchoalveolar lavage (BAL) cell populations following either LPS or silica exposure. The purpose of the present study was to assess the relative contributions of AMs and PMNs to the amounts of NO produced by BAL cells following intratracheal (IT) instillation of either LPS or silica. Male Sprague Dawley rats (265-340 g body wt.) were given LPS (10 mg/100 g body wt.) or silica (5 mg/100 g body wt.). BAL cells were harvested 18-24 h post-IT and enriched for AMs or PMNs using density gradient centrifugation. Media levels of nitrate and nitrite (NOx; the stable decomposition products of NO) were then measured 18 h after ex vivo culture of these cells. Following IT exposure to either LPS or silica, BAL cell populations were approximately 20% AMs and approximately 80% PMNs. After density gradient centrifugation of BAL cells from LPS- or silica-treated rats, cell fractions were obtained which were relatively enriched for AMs (approximately 60%) or PMNs (approximately 90%). The amounts of NOx produced by the AM-enriched fractions from LPS- or silica-treated rats were approximately 2-4-fold greater than that produced by the PMN-enriched fractions. Estimations of the relative contribution of AMs or PMNs to the NOx produced indicated that: (i) following LPS treatment, 75%-89% of the NOx was derived from AMs and 11%-25% from PMNs; and (ii) following silica treatment, 76%-100% of the NOx was derived from AMs and 0-24% from PMNs. Immunohistochemistry for inducible NO synthase on lung tissue sections supported these findings. We conclude that AMs are the major source of the NO produced by BAL cells during acute pulmonary inflammatory responses to LPS or silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号