首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 3,438-nucleotide (nt) sequence containing a 3,054-nt open reading frame of the gene (rps120) encoding an antigenic, intracytoplasmic, spotted fever group-specific and heat-stable 120-kilodalton protein (PS120) of Rickettsia japonica was determined. The nt and deduced 1,018 amino-acid (aa) sequences were compared to those of R. conorii since only those of this species had been determined among SFG rickettsiae. The homologies of these sequences between R. japonica and R. conorii were considerably high at 97 and 95%, respectively. These high homologies were comparable to those of beta-peptides encoded by the ompB genes among SFG rickettsiae. It was also found that the genome of R. prowazekii contained a nt sequence with 68% homology to that of the rps120 gene of R. japonica.  相似文献   

2.
3.
Nine pathogenic strains of Rickettsia japonica isolated from patients with Oriental spotted fever were compared phenotypically and genotypically. Constitution and antigenicity of the proteins demonstrated to be the same among strains. Polymerase chain reaction (PCR) amplification of the two major outer membrane protein genes (ompA and ompB) and an intracellular spotted fever group-common antigen protein gene (rps120) produced the same sizes of products for all strains. Restriction fragment length polymorphism of the PCR products showed the same pattern among strains with each endonuclease. Thus, these strains belong to a single type, the same as the type strain YH (=ATCC VR-1363).  相似文献   

4.
The PCR product amplified from Rickettsia japonica with the primer pair Rr 190.70p and Rr 190.602n of R. rickettsii 190-kDa antigen gene was cloned into M13mp19 RF DNA at the EcoRI site and sequenced by chemiluminescent DNA sequencing. The sequence revealed a molecular size of 533 base pairs (bp). The primer-flanking region of 491 bp, an open reading frame, was compared with the corresponding region of R. rickettsii, demonstrating 35 nucleotide substitutions in R. japonica. The sequence of primer portions in R. japonica DNA was also analyzed, revealing one nucleotide substitution in the Rr 190.70p and two in the Rr 190.602n portion. The homology in the overall sequence of PCR-amplified regions between R. japonica and R. rickettsii was 93% in nucleotide and 85% in putative amino acid structure. The sequence contains no cleavage site for the restriction endonuclease AfaI but two PstI sites giving three fragments of 121, 159, and 253 bp, which differentiated R. japonica from other spotted fever group rickettsiae in addition to R. rickettsii. The cleavage sites for endonucleases AluI, HinfI, and MunI that disappeared or appeared in the sequence by nucleotide substitution differentiated R. japonica from others, as did PstI. The estimation of molecular size of DNA fragments on polyacrylamide gel electrophoresis is discussed.  相似文献   

5.
Restriction fragment length polymorphism of polymerase chain reaction (PCR) amplification products differentiated Rickettsia japonica, a causative agent of Oriental spotted fever, from other spotted fever group (SFG) rickettsiae. Primer pair Rr190. 70p and Rr190. 602n of R. rickettsii 190-kDa antigen gene sequence primed genomic DNAs obtained from R. japonica, type strain YH and strains NT, NK, YKI, and TKN. The products were cleaved by PstI but not by AfaI restriction endonuclease. The PstI digestion pattern of PCR-products amplified from all strains of R. japonica was identical and easily differentiated from that of other SFG rickettsiae. The present study demonstrated a genotypic difference between R. japonica and other pathogenic SFG rickettsiae.  相似文献   

6.
Major surface polypeptides of Rickettsia japonica migrated to the position of 120, 135, and 145 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, when the organisms were solubilized at room temperature. Two major bands at the position of 135 and 185 kDa were seen, when the organisms were solubilized by heating before electrophoresis. Heat-denaturation of the 120- and 145-kDa polypeptides in excised gel bands changed their mobility and caused them to migrate to 135- and 185-kDa positions, respectively. Two polypeptides at the 120-kDa position were demonstrated: one is a major heat-modifiable polypeptide and the other a minor heat-stable. Peptide mapping was performed to determine the identity between native and denatured polypeptides.  相似文献   

7.
Genomic libraries of Rickettsia japonica were cloned into an expression vector λgt11. A clone expressing a protein reactive with antiserum against 120-kilodalton (kDa) proteins, a mixture of heat-modifiable and heat-stable polypeptides, was selected and designated as λRj120-1. The expressed protein has a molecular mass of 180 kDa. Western immunoblotting demonstrated that the expressed protein was a fusion protein with β-galactosidase. The antiserum against 120-kDa proteins was absorbed by the induced lysogen, resulting in the removal of reactivity to the heat-stable 120-kDa polypeptide. The antiserum against the expressed protein reacted with heat-stable 120- to 130-kDa polypeptides of spotted fever group (SFG) rickettsiae in addition to R. japonica. The findings indicated that the protein expressed from the cloned gene of R. japonica possessed the antigenicity group-common to SFG rickettsiae. Primers designed from the gene coding for R. conorii heat-stable 120-kDa protein (Schuenke, K.W., and Walker, D.H., Infect. Immun. 62: 904-909, 1994) and λgt11 lacZ gene amplified the λRj120-1 DNA by the polymerase chain reaction (PCR). Analysis of restriction fragment length polymorphism (RFLP) of the PCR-amplified products revealed that the cloned DNA corresponds to a portion of the gene coding for the heat-stable 120-kDa protein of R. conorii with 2,519 nucleotides beginning at nucleotide 190 of the open reading frame. RFLP demonstrated that the cloned gene was highly homologous to the corresponding gene of R. conorii.  相似文献   

8.
Cross-reactivity between Rickettsia japonica and R. typhi was observed by immunofluorescence tests using sera from patients with Oriental spotted fever (OSF), from whom the causative agent was isolated and identified as R. japonica. Western immunoblotting with these sera revealed that only the 120-kilodalton surface polypeptide, i.e., rickettsial outer membrane protein (rOmp) B, has a common antigenicity with the 105-kilodalton surface polypeptide of R. typhi. In some cases, antibodies specifically reactive with R. typhi were detected in acute-phase sera followed by a significant rise in titers, possibly because of an anamnestic response to a previous infection with an R. typhi-like agent; the sera retained reactivity to R. typhi even after absorption by a homologous strain. A lipopolysaccharide (LPS)-like antigen of R. typhi was found to be reactive with some sera of OSF patients. The ladder bands on Western immunoblot of rickettsial organisms were confirmed to be polysaccharide in nature, which was demonstrated by comparing them with the pattern of silver-stained gel of proteinase K-treated rickettsial specimens after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

9.
A rickettsial strain IO-1 has been isolated from a tick, Ixodes ovatus, in Japan and genetically identified as Rickettsia helvetica, a member of the spotted fever group rickettsiae. Ultrastructural observations were made on the microorganism. The ultrastructure of R. helvetica IO-1 appeared to be generally the same as that previously shown for other rickettsiae of the spotted fever and typhus groups. The rickettsiae were primarily found free in the cytoplasm of L929 cultured cells. Occasionally, the rickettsiae may also invade the host cell nucleus; however, the frequency of the nuclear localization was very low.  相似文献   

10.
A Rickettsia sp. was isolated from the blood of a patient with an acute febrile illness using the shell vial technique; the isolate was named CN45Kr and was identified by molecular assay as Rickettsia monacensis , which was first recognized as a pathogen in Spain. Sequencing analysis showed that the gltA sequence of the isolate was identical to that of Rickettsia sp. IRS3. The ompA‐ 5mp fragment sequence showed 100% identity to those of R. monacensis and Rickettsia sp. In56 and ompA‐3pA In56 and 100% identity to that of Rickettsia sp. IRS3. The ompB sequence was found to have 99.9% similarity to that of R. monacensis IrR/Munich. This study confirms the pathogenicity of this agent and provides additional information about its geographic distribution.
  相似文献   

11.
In Thailand, the first human cases of spotted fever group rickettsiosis were reported in 1994, but no serosurveys on wild rats have yet been conducted. We investigated the seroepidemiology in wild rats collected in the 1970s from two regions in Thailand, and found a 62.2% positive rate of antibodies for spotted fever group rickettsia (SFGR) by the indirect immunofluorescence antibody test. Of the antibody-positive rats, 82.2% had higher titers of antibodies against TT-118 than those against Rickettsia japonica, which suggests that Thailand is infested mainly with the TT-118 strain or its antigenically related organisms. The prevalence of antibodies in Bandicota indica was significantly higher than that in other species, which suggests that B. indica is important as a reservoir of SFGR in Thailand.  相似文献   

12.
We screened a phage library of Rickettsia typhi with a polyclonal antiserum to clone genes which encode immunogenic proteins of R. typhi. Among several clones obtained, one clone codes for a 466-amino-acid protein similar to the heat-shock protein, HtrA. The deduced rickettsial HtrA contains a putative signal peptide sequence at the N-terminus, a serine protease-like domain, and two PDZ domains. The recombinant protein of rickettsial HtrA reacted with sera from patients with murine typhus and tsutsugamushi disease. We suggest that this gene and its recombinant protein would be valuable for the immunologic diagnosis of rickettsial diseases.  相似文献   

13.
The structural gene for the major outer membrane protein (MOMP) from Chlamydia trachomatis was cloned and sequenced. A lambda gt11 recombinant (lambda gt11/L2/33) that contains a portion of the MOMP coding sequence was used to probe a lambda 1059 library constructed from DNA obtained from C. trachomatis serovar L2. Selected lambda 1059 recombinants were mapped with endonuclease restriction enzymes. The MOMP gene was mapped to the 5' end of a BamHI fragment of approximately 9 kilobases. Contiguous endonuclease restriction fragments identified within this region permitted the selection of specific fragments for subcloning and DNA sequencing. The MOMP gene consisted of a 1,182-base-pair open reading frame that encoded 394 amino acids and ended with three stop codons. The known amino-terminal amino acid was preceded by 22 amino acids whose sequence was compatible with a leader or signal sequence. The primary structure of MOMP determined from the translated DNA sequence demonstrated nine cysteine residues and a remarkably homogeneous distribution of charged and hydrophobic residues.  相似文献   

14.
肺炎嗜衣原体主要外膜蛋白是其特征抗原之一。实验中通过PCR方法从肺炎嗜衣原体基因组中扩增主要外膜蛋白基因,插入pET32a(+)表达载体,转化BL21(DE3)感受态细胞,得到表达56kD融合蛋白的工程菌株。该菌株的表达量可达53%,提纯后的主要外膜蛋白纯度可达90%以上,在Western Blotting试验和胶体金免疫层析试验中显示了良好的抗原性。  相似文献   

15.
Eight spotted fever group (SFG) rickettsiae isolated from ticks in Japan were classified by phylogenetic analysis based on the nucleotide sequences of both the citrate synthase-encoding gene (gltA) and 190-kDa antigen-encoding gene (rOmpA). In the phylogenetic tree of gltA, strains DT-1 and FLA-1 isolated from the Dermacentor taiwanensis and Haemaphysalis frava ticks, respectively, were placed as Rickettsia japonica, and strains IO-1, IO-2, IO-25, IM-1 and IP-2 from genus Ixodes ticks were placed as Rickettsia helvetica. Strain AT-1 isolated from the Amblyomma testudinarium belonged to the cluster including Rickettsia akari, Rickettsia australis and Rickettsia felis. In the phylogenetic tree of the rOmpA, strains DT-1 and FLA-1 were placed as R. japonica, and strain AT-1 belonged to the cluster including Rickettsia cooleyi and the symbiont of Ixodes scapularis. The rOmpA fragments of 5 Ixodes isolates could not be amplified by PCR. The present study showed that strains DT-1 and FLA-1 were genotypically identical to R. japonica, and 5 Ixodes isolates were associated with the R. helvetica. Based on previous genotypic and antigenic data, and the phylogenetic analysis presented here, strain AT-1 should be considered as a new species among SFG rickettsiae.  相似文献   

16.
Immunoelectron microscopy demonstrated antigenic heat-stable 120- to 130-kilodalton proteins (PS120) of spotted fever group (SFG) rickettsiae with antiserum against recombinant PS120 of Rickettsia japonica. In the case of R. japonica, a major part of the protein was shown to be localized outside the electron-lucent nucleoid-like region in the cytoplasm of the organisms. The other SFG rickettsiae represented a similar localization of the PS120 antigens cross-reactive to that of R. japonica. On the other hand, a typhus group rickettsia demonstrated no antigens cross-reactive to the PS120 of SFG rickettsiae.  相似文献   

17.
The major outer membrane protein (MOMP) gene from an ovine abortion strain of Chlamydia psittaci (S26/3) has been cloned and sequenced. The gene shows the features of other chlamydial MOMPs but comparison with the previously reported sequence for the ovine abortion isolate A22/M has revealed substantial sequence divergence which is clustered into the same four intramolecular regions as the sequence variation found between C. trachomatis serovars. Subsequent restriction enzyme analysis of A22/M DNA has shown that it has an avian-type genomic profile and thus the comparison is between types rather than between strains.  相似文献   

18.
The major surface protein (Msp) of Treponema denticola has been implicated as a mediator of the interaction between the spirochete and the gingival epithelium in periodontal diseases. Previous studies showed that the Msp of T. denticola ATCC 35405 had porin activity, depolarized epithelial cell membranes, bound to extracellular matrix components of epithelial cells, and formed a regular hexagonal surface array in the treponemal outer membrane. The gene encoding Msp in ATCC 35405 was recently cloned, sequenced, and expressed in Escherichia coli (J. C. Fenno, K.-H. Müller, and B. C. McBride, J. Bacteriol. 178:2489-2496, 1996). In the present study, we identified genes encoding Msp-like proteins in several oral spirochetes. A prominent heat-modifiable Msp-like protein having an apparent molecular mass of between 43 and 64 kDa was present in all oral spirochete strains tested. Antibodies raised against the ATCC 35405 Msp reacted strongly with the Msp proteins of T. denticola ATCC 35404 and T. vincentii, reacted very weakly with the Msp protein of T. denticola ATCC 33520, and did not react with T. denticola OTK, T. socranskii, and T. pectinovorum. The msp loci of the T. denticola strains and T. vincentii were identified in analyses using PCR with oligonucleotide primers derived from the DNA sequence flanking msp in ATCC 35405. Southern blot analysis showed at least three groups of related msp DNA sequences. Comparison of DNA sequences of the 5' and 3' ends of the msp genes showed high sequence homology in the flanking regions and signal peptide coding regions, while the homologies between regions encoding the mature peptide were as low as 50%. The entire msp DNA sequences of T. denticola ATCC 33520 and OTK were determined, and the deduced Msp amino acid sequences were compared to the sequence of the previously reported Msp of ATCC 35405. The results show that the msp locus is conserved in oral treponemes but that there are significant differences between the mature Msp peptides of different strains. Further studies of the antigenic domains, functional domains, and physical structures of Msp proteins, based on these results, will enhance understanding of the role of Msp in the cytopathology associated with oral spirochetes.  相似文献   

19.
We have determined the nucleotide sequence of the gene for a major outer membrane protein (MOMP) of apparent molecular weight 29.5 kD of the virulent Breinl strain of Rickettsia prowazekii. The gene contains an open reading frame (ORF) that encodes a 282-amino-acid polypeptide with a calculated molecular mass of 31549 daltons. A signal-like peptide sequence is found at the deduced N terminus. A heterologous 29.5-kD antigen expressed in Escherichia coli was shown to be secreted into the periplasm. A database search for similar protein sequences revealed considerable homology of the polypeptide with the E. coli peptidyl-prolyl cis/trans isomerase and related proteins of the parvulin family. The genes for MOMP of the virulent Breinl and EVir strains and the vaccine Madrid E strain were amplified using specific primers and cloned into expression vector pQE-30. We found that the polypeptides encoded by the recombinant DNAs do not differ in SDS-PAGE mobility, while the native MOMP of the Breinl strain is known to be different from the corresponding proteins of the Madrid E and EVir strains. Furthermore, no differences within the ORF for the 29.5-kD proteins of the three strains were found by restriction endonuclease analysis of polymerase chain reaction (PCR) products. A possible role of parvulin-like protein (Plp) in the virulence of epidemic typhus agent and the nature of interstrain differences are discussed. Near the plp gene on the opposite strand, an origin of the gene that codes for the SecA subunit of a preprotein translocase was found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号