首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

3.
A rate-limiting step of tumor cell metastasis is matrix degradation by active matrix metalloproteinases (MMPs). It is known that reactive oxygen species are involved in tumor metastasis. Sustained production of H(2)O(2) by phenazine methosulfate (PMS) induced activation of pro-MMP-2 through the induction of membrane type 1-MMP (MT1-MMP) expression in HT1080 cells. MMP-2, MMP-9, and tissue inhibitor of metalloproteinase-1 and -2 levels were changed negligibly by PMS. A one time treatment with H(2)O(2) did not induce activation of MMPs. It was also demonstrated that superoxide anions and hydroxyl radicals were not related to PMS action. PMS-induced pro-MMP-2 activation was regulated by the receptor tyrosine kinases, especially the receptors of platelet-derived growth factor and vascular endothelial growth factor, and downstream on the phosphatidylinositol 3-kinase/NF-kappa B pathway but not Ras, cAMP-dependent protein kinase, protein kinase C, and mitogen-activated protein kinases. PMS did not induce pro-MMP-2 activation in T98G and NIH3T3 cells. This may be related to a low level of MT1-MMP, indicating a threshold level of MT1-MMP is important for pro-MMP-2 activation. Furthermore, PMS increased cell motility and invasion but decreased cell-cell interaction. Cell-matrix interaction was not affected by PMS.  相似文献   

4.
Induction of apoptosis may be a promising therapeutic approach in cancer therapy. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists induce apoptosis in various cancer cells. However, the molecular mechanism remains to be defined. The present study was undertaken to determine the precise mechanism of cell death induced by ciglitazone, a synthetic PPARγ agonist, in A172 human glioma cells. Ciglitazone resulted in a concentration- and time-dependent apoptotic cell death. Similar results were obtained with troglitazone, another synthetic PPARγ agonist. Ciglitazone induced reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by the antioxidant N-acetylcysteine, suggesting an important role of ROS generation in the ciglitazone-induced cell death. The cell death induced by ciglitazone was inhibited by the PPARγ antagonist GW9662. Although ciglitazone treatment caused a transient activation of extracellular signal-regulated kinase (ERK) and p38, the ciglitazone-induced cell death was not affected by inhibitors of these kinses. Ciglitazone caused a loss of mitochondrial membrane potential and its effect was prevented by N-acetylcysteine and GW9662. The specific inhibitor of caspases-3 DEVD-CHO and the general caspase inhibitor z-DEVD-FMK did not exert the protective effect against the ciglitazone-induced cell death and caspase-3 activity also was not altered by ciglitazone. The ciglitazone-induced cell death was accompanied by down-regulation of XIAP and Survivin, but not by release of apoptosis-inducing factor. Taken together, these findings suggest that down-regulation of XIAP and Survivin may play an active role in mediating a caspase-independent and -PPARγ-dependent cell death induced by ciglitazone in A172 human glioma cells. These data may provide a novel insight into potential therapeutic strategies for treatment of glioblastoma.  相似文献   

5.
While it is well established that PPARgamma ligands inhibit cell growth and induce apoptosis in colon cancer cells, the mechanism of these effects of PPARgamma ligands is unclear. In this report, we demonstrate that the PPARgamma ligand, ciglitazone, exhibits an anti-proliferative effect and blocks G1/S cell cycle progression through regulation of p27kip1 protein levels and inhibition of Cdk2 activity in HT-29 colon cancer cells. The ciglitazone-induced G1/S cell cycle arrest was noted only after 72 h of exposure, corresponding to elevated protein levels of p27kip1. However, an increase in p27kip1 protein synthesis as evidenced by increased p27kip1 gene promoter activity and mRNA abundance was observed as early as 24 h after exposure to ciglitazone. Proteasome activity, an additional mechanism of p27kip1 regulation, was dramatically inhibited after ciglitazone exposure, but only after 72 h of exposure. We also note that the effects of ciglitazone on p27kip1 gene regulation are PPRE independent. These data suggest that ciglitazone-induced G1/S arrest is through Cdk2 inhibition and an increase of p27kip1 protein levels which in turn is due a balance of ciglitazone's affect on new protein synthesis and degradation.  相似文献   

6.
The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.  相似文献   

7.
We previously reported that CS (chondroitin sulfate) GAG (glycosaminoglycan), expressed on MCSP (melanoma-specific CS proteoglycan), is important for regulating MT3-MMP [membrane-type 3 MMP (matrix metalloproteinase)]-mediated human melanoma invasion and gelatinolytic activity in vitro. In the present study, we sought to determine if CS can directly enhance MT3-MMP-mediated activation of pro-MMP-2. Co-immunoprecipitation studies suggest that MCSP forms a complex with MT3-MMP and MMP-2 on melanoma cell surface. When melanoma cells were treated with betaDX (p-nitro-beta-D-xylopyranoside) to inhibit coupling of CS on the core protein, both active form and proform of MMP-2 were no longer co-immunoprecipitated with either MCSP or MT3-MMP, suggesting a model in which CS directly binds to MMP-2 and presents the gelatinase to MT3-MMP to be activated. By using recombinant proteins, we determined that MT3-MMP directly activates pro-MMP-2 and that this activation requires the interaction of the C-terminal domain of pro-MMP-2 with MT3-MMP. Activation of pro-MMP-2 by suboptimal concentrations of MT3-MMP is also significantly enhanced in the presence of excess C4S (chondroitin 4-sulfate), whereas C6S (chondroitin 6-sulfate) or low-molecular-mass hyaluronan was ineffective. Affinity chromatography studies using CS isolated from aggrecan indicate that the catalytic domain of MT3-MMP and the C-terminal domain of MMP-2 directly bind to the GAG. Thus the direct binding of pro-MMP-2 with CS through the C-domain would present the catalytic domain of pro-MMP-2 to MT3-MMP, which facilitates the generation of the active form of MMP-2. These results suggest that C4S, which is expressed on tumour cell surface, can function to bind to pro-MMP-2 and facilitate its activation by MT3-MMP-expressing tumour cells to enhance invasion and metastasis.  相似文献   

8.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a key enzyme in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2). Both activation and autocatalytic maturation of pro-MMP-2 in trans suggest that MT1-MMP should exist as oligomers on the cell surface. To better understand the functions of MT1-MMP, we designed mutants with substitutions in the active site (E240A), the cytoplasmic tail (C574A), and the RRXR furin cleavage motifs (R89A, ARAA, and R89A/ARAA) of the enzyme. The mutants were expressed in MCF7 breast carcinoma cells that are deficient in both MMP-2 and MT1-MMP. Our results supported the existence of MT1-MMP oligomers and demonstrated that a disulfide bridge involving the Cys(574) of the enzyme's cytoplasmic tail covalently links MT1-MMP monomers on the MCF7 cell surface. The presence of MT1-MMP oligomers also was shown for the enzyme naturally expressed in HT1080 fibrosarcoma cells. The single (R89A and ARAA) and double (R89A/ARAA) furin cleavage site mutants of MT1-MMP were processed in MCF7 cells into the mature proteinase capable of activating pro-MMP-2 and stimulating cell locomotion. This suggested that furin cleavage is not a prerequisite for the conversion of pro-MT1-MMP into the functionally active enzyme. A hydroxamate class inhibitor (GM6001, or Ilomastat) blocked activation of MT1-MMP in MCF7 cells but not in HT1080 cells. This implied that a matrixin-like proteinase sensitive to hydroxamates could be involved in a furin-independent, alternative pathway of MT1-MMP activation in breast carcinoma cells. The expression of the wild type MT1-MMP enhanced cell invasion and migration, indicating a direct involvement of this enzyme in cell locomotion. In contrast, both the C574A and E240A mutations render MT1-MMP inefficient in stimulating cell migration and invasion. In addition, the C574A mutation negatively affected cell adhesion, thereby indicating critical interactions involving the cytosolic part of MT1-MMP and the intracellular milieu.  相似文献   

9.
10.
11.
Genes associated with regulation of membrane-type matrix metalloproteinase-1 (MT1-MMP)-mediated pro-MMP-2 processing were screened in 293T cells by a newly developed expression cloning method. One of the gene products, which promoted processing of pro-MMP-2 by MT1-MMP was claudin-5, a major component of endothelial tight junctions. Expression of claudin-5 not only replaced TIMP-2 in pro-MMP-2 activation by MT1-MMP but also promoted activation of pro-MMP-2 mediated by all MT-MMPs and MT1-MMP mutants lacking the transmembrane domain (DeltaMT1-MMP). A carboxyl-terminal deletion mutant of pro-MMP-2 (proDeltaMMP-2) was processed to an intermediate form by MT1-MMP in 293T cells and was further converted to an activated form by introduction of claudin-5. In contrast to the stimulatory effect of TIMP-2 on pro-MMP-2 activation by MT1-MMP, activation of pro-MMP-2 by DeltaMT1-MMP in the presence of claudin-5 and proDeltaMMP-2 processing by MT1-MMP were both inversely repressed by expression of exogenous TIMP-2. These results suggest that TIMP-2 is not involved in cluadin-5-induced pro-MMP-2 activation by MT-MMPs. Stimulation of MT-MMP-mediated pro-MMP-2 activation was also observed with other claudin family members, claudin-1, claudin-2, and claudin-3. Amino acid substitutions or deletions in ectodomain of claudin-1 abolished stimulatory effect. Direct interaction of claudin-1 with MT1-MMP and MMP-2 was demonstrated by immunoprecipitation analysis. MT1-MMP was co-localized with claudin-1 not only at cell-cell borders, but also at other parts of the cells. TIMP-2 enhanced cell surface localization of MMP-2 mediated by MT1-MMP, and claudin-1 also stimulated it. These results suggest that claudin recruits all MT-MMPs and pro-MMP-2 on the cell surface to achieve elevated focal concentrations and, consequently, enhances activation of pro-MMP-2.  相似文献   

12.
13.
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for the membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent activation of pro-MMP-2 on the cell surface. MT1-MMP-bound TIMP-2 has been shown to function as a receptor for secreted pro-MMP-2, resulting in the formation of a trimolecular complex. In the presence of uncomplexed active MT1-MMP, the prodomain of cell surface-associated MMP-2 is cleaved, and activated MMP-2 is released. However, the behavior of MT1-MMP-bound TIMP-2 during MMP-2 activation is currently unknown. In this study, (125)I-labeled recombinant TIMP-2 ((125)I-rTIMP-2) was used to investigate the fate of TIMP-2 during pro-MMP-2 activation by HT1080 and transfected A2058 cells. HT1080 and A2058 cells transfected with MT1-MMP cDNA (but not vector-transfected A2058 cells) were able to bind (125)I-rTIMP-2, to activate pro-MMP-2, and to process MT1-MMP into an inactive 43-kDa form. Under these conditions, (125)I-rTIMP-2 bound to the cell surface was rapidly internalized and degraded in intracellular organelles through a bafilomycin A(1)-sensitive mechanism, and (125)I-bearing low molecular mass fragment(s) were released in the culture medium. These different processes were inhibited by hydroxamic acid-based synthetic MMP inhibitors and rTIMP-2, but not by rTIMP-1 or cysteine, serine, or aspartic proteinase inhibitors. These results support the concept that the MT1-MMP-dependent internalization and degradation of TIMP-2 by some tumor cells might be involved in the regulation of pericellular proteolysis.  相似文献   

14.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

15.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

16.
We designed and synthesized a celecoxib derivative UTX-121 to enhance its anti-tumor activity. Similar to celecoxib, this compound could also inhibit matrix metalloproteinase (MMP)-9 activity. In addition, UTX-121 suppressed membrane-type 1 MMP (MT1-MMP)-mediated pro-MMP-2 activation by disturbing the cell surface expression of MT1-MMP. UTX-121 also impeded the glycosylation of cell surface proteins, resulting in the suppression of cell attachment to fibronectin. This inhibition by UTX-121 caused the reduction of fibronectin-stimulated focal adhesion kinase activation, Akt activation, and cell migration. Consequently, UTX-121 treatment significantly inhibited fibronectin-induced HT1080 cell invasion into the Matrigel. UTX-121 may be a potent lead compound that can be used to develop a novel anti-tumor drug.  相似文献   

17.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

18.
Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin alpha2, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.  相似文献   

19.
The membrane-type 1 matrix metalloproteinase (MT1-MMP) has been shown to be a key enzyme in tumor angiogenesis and metastasis. MT1-MMP hydrolyzes a variety of extracellular matrix components and is a physiological activator of pro-MMP-2, another MMP involved in malignancy. Pro-MMP-2 activation by MT1-MMP involves the formation of an MT1-MMP.tissue inhibitors of metalloproteinases 2 (TIMP-2). pro-MMP-2 complex on the cell surface that promotes the hydrolysis of pro-MMP-2 by a neighboring TIMP-2-free MT1-MMP. The MT1-MMP. TIMP-2 complex also serves to reduce the intermolecular autocatalytic turnover of MT1-MMP, resulting in accumulation of active MT1-MMP (57 kDa) on the cell surface. Evidence shown here in Timp2-null cells demonstrates that pro-MMP-2 activation by MT1-MMP requires TIMP-2. In contrast, a C-terminally deleted TIMP-2 (Delta-TIMP-2), unable to form ternary complex, had no effect. However, Delta-TIMP-2 and certain synthetic MMP inhibitors, which inhibit MT1-MMP autocatalysis, can act synergistically with TIMP-2 in the promotion of pro-MMP-2 activation by MT1-MMP. In contrast, TIMP-4, an efficient MT1-MMP inhibitor, had no synergistic effect. These studies suggest that under certain conditions the pericellular activity of MT1-MMP in the presence of TIMP-2 can be modulated by synthetic and natural (TIMP-4) MMP inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号